Background: Carcinoma of uterine cervix is the second most common cancers among women worldwide. Combined radiation and chemotherapy is the choice of treatment for advanced stages of the disease. The prognosis is poor, with a five-year survival rate ranging from about 20-65%, depending on stage of the disease. Therefore, genetic characterization is essential for understanding the biology and clinical heterogeneity in cervical cancer (CC).

Methods: We used a genome-wide screening method--comparative genomic hybridization (CGH) to identify DNA copy number changes in 77 patients with cervical cancer. We applied categorical and survival analyses to analyze whether chromosomal changes were related to clinico-pathologic characteristics and patients survival.

Results: The CGH analysis revealed a loss of 2q33-q37 (57.1%), gain of 3q (54.5%) and chromosomal amplifications (20.77%) as frequent genetic changes. A total of 15 amplified chromosomal sites were detected in 16 cases that include 1p31, 2q32, 7q22, 8q21.2-q24, 9p22, 10q21, 10q24, 11q13, 11q21, 12q15, 14q12, 17p11.2, 17q22, 18p11.2, and 19q13.1. Recurrent amplified sites were noted at 11q13, 11q21, and 19q13.1. The genomic alterations were further evaluated for prognostic significance in CC patients, and we did not find any correlation with a number of clinical or histological parameters. The tumors harboring HPV18 exhibited higher genomic instability compared to tumors with HPV 16.

Conclusions: This study demonstrated that 2q33-q37 deletions, 3q gains and chromosomal amplifications as characteristic changes in invasive CC. These genetic alterations will aid in the identification of novel tumor suppressor gene(s) at 2q33-q37 and oncogenes at amplified chromosomal sites. Molecular characterization of these chromosomal changes utilizing the current genomic technologies will provide new insights into the biology and clinical behavior of CC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC356916PMC
http://dx.doi.org/10.1186/1471-2407-4-5DOI Listing

Publication Analysis

Top Keywords

chromosomal amplifications
12
frequent genetic
8
genetic changes
8
biology clinical
8
cervical cancer
8
chromosomal changes
8
amplified chromosomal
8
chromosomal sites
8
11q13 11q21
8
chromosomal
7

Similar Publications

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF

DNA methylation is an essential epigenetic mechanism for regulation of gene expression, through which many physiological (X-chromosome inactivation, genetic imprinting, chromatin structure and miRNA regulation, genome defense, silencing of transposable elements) and pathological processes (cancer and repetitive sequences-associated diseases) are regulated. Nanopore sequencing has emerged as a novel technique that can analyze long strands of DNA (long-read sequencing) without chemically treating the DNA. Interestingly, nanopore sequencing can also extract epigenetic status of the nucleotides (including both 5-Methylcytosine and 5-hydroxyMethylcytosine), and a large variety of bioinformatic tools have been developed for improving its detection properties.

View Article and Find Full Text PDF

Multi-insertion/deletion polymorphisms (Multi-InDels), as the novel genetic markers, show great potential in forensic research. Whereas, forensic researchers mainly focus on the multi-InDels on the autosomes, which can provide relatively limited information in some complex paternity cases. In this study, a novel X chromosomal multi-InDel multiplex amplification system was designed, containing 22 multi-InDels and one STR locus on the X chromosome.

View Article and Find Full Text PDF

Embryonic-type neuroectodermal tumors (ENTs) arising from testicular germ cell tumors (GCTs) is a relatively common type of somatic transformation in GCTs with poor prognosis and limited therapeutic options, particularly when patients develop disease recurrence or metastasis. Knowledge of key events driving this transformation is limited to the paucity of comprehensive genomic data. We performed a retrospective database search in a CLIA- and CAP-certified laboratory for testicular GCT-derived ENTs that had previously undergone NGS-based comprehensive genomic profiling during the course of clinical care.

View Article and Find Full Text PDF

STIL is a regulatory protein essential for centriole biogenesis, and its dysregulation has been implicated in various diseases, including malignancies. However, its role in non-small-cell lung carcinoma (NSCLC) remains unclear. In this study, we examined STIL expression and its potential association with chromosomal numerical abnormalities (CNAs) in NSCLC using The Cancer Genome Atlas (TCGA) dataset, immunohistochemical analysis, and in vitro experiments with NSCLC cell lines designed to overexpress STIL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!