Mitochondrial DNA (mtDNA) copy number regulation is altered in several human mtDNA-mutation diseases and it is also important in a variety of normal physiological processes. Mitochondrial transcription factor A (TFAM) is essential for human mtDNA transcription and we demonstrate here that it is also a key regulator of mtDNA copy number. We initially performed in vitro transcription studies and determined that the human TFAM protein is a poor activator of mouse mtDNA transcription, despite its high capacity for unspecific DNA binding. Next, we generated P1 artificial chromosome (PAC) transgenic mice ubiquitously expressing human TFAM. The introduced human TFAM gene was regulated in a similar fashion as the endogenous mouse Tfam gene and expression of the human TFAM protein in the mouse did not result in down-regulation of the endogenous expression. The PAC-TFAM mice thus had a net overexpression of TFAM protein and this resulted in a general increase of mtDNA copy number. We used a combination of mice with TFAM overexpression and TFAM knockout and demonstrated that mtDNA copy number is directly proportional to the total TFAM protein levels also in mouse embryos. Interestingly, the expression of human TFAM in the mouse results in up-regulation of mtDNA copy number without increasing respiratory chain capacity or mitochondrial mass. It is thus possible to experimentally dissociate mtDNA copy number regulation from mtDNA expression and mitochondrial biogenesis in mammals in vivo. In conclusion, our results provide genetic evidence for a novel role for TFAM in direct regulation of mtDNA copy number in mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddh109DOI Listing

Publication Analysis

Top Keywords

mtdna copy
32
copy number
32
human tfam
20
tfam protein
16
tfam
12
mtdna
11
mitochondrial transcription
8
transcription factor
8
copy
8
number
8

Similar Publications

Background: The mitochondrial cascade hypothesis suggests that mitochondrial dysfunction plays an important role in the pathogenesis of Alzheimer’s disease dementia. Recent data have shown that mitochondrial DNA copy number (mtDNAcn) in human blood is associated with dementia risk and cognitive function, but which specific cognitive measures or domains are associated with mitochondrial dysfunction and whether this relationship is affected by health deterioration such as physical frailty or mitochondrial somatic mutations is not clear.

Methods: We measured mtDNAcn and heteroplasmies using fastMitoCalc and MitoCaller, respectively, from UK Biobank Whole Genome Sequencing (WGS) data at study entry (2006‐2010).

View Article and Find Full Text PDF

Background: Mitochondrial DNA copy number (mtDNAcn) quantifies the number of mitochondria genomes per nucleated cell, with reduced mtDNAcn being associated with increased Alzheimer’s disease (AD) neuropathology. Blood‐based mtDNAcn has technical confounders, such as DNA purification, and biological confounders, such as compensatory upregulation of mtDNA. Therefore, we optimized a protocol for mtDNAcn quantification using droplet digital PCR (ddPCR) by testing (i) whole peripheral blood mononuclear cells (PBMCs) vs platelet‐depleted PBMCs, (ii) column‐based DNA extraction vs cell lysate, and (iii) mitochondrial DNA replication (mtDNArep).

View Article and Find Full Text PDF

Nematodes are abundant and ubiquitous animals which are poorly known at intraspecific level. This work represents the first attempt to fill the gap on basic knowledge of genetic variability and differentiation in Protostrongylus oryctolagi, a nematode parasite of lagomorphs. 68 cox1 sequences were obtained from brown hares collected in five locations in Northern and Central Italy, highlighting the presence of a high amount of genetic variation inside this species.

View Article and Find Full Text PDF

Environmental DNA (eDNA) analysis has become a popular conservation tool for detecting rare and elusive species. eDNA assays typically target mitochondrial DNA (mtDNA) due to its high copy number per cell and its ability to persist in the environment longer than nuclear DNA. Consequently, the development of eDNA assays has relied on mitochondrial reference sequences available in online databases, or in cases where such data are unavailable, de novo DNA extraction and sequencing of mtDNA.

View Article and Find Full Text PDF

Thunb. (1784) is primarily distributed in eastern Asia,  has a total length of 152,778 bp and consists of a large single copy (LSC) region of 84,517 bp, a small single copy (SSC) region of 18,277 bp, and two inverted repeat (IRs) regions of 24,992 bp . The GC content is 37.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!