Mitochondrial DNA sequence heterogeneity in circulating normal human CD34 cells and granulocytes.

Blood

Hematology Branch and Flow Cytometry Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bldg 10, Rm 7C103, 9000 Rockville Pike, Bethesda, MD 20892-1652, USA.

Published: June 2004

We have reported marked mitochondrial DNA (mtDNA) sequence heterogeneity among individual CD34 clones from adult bone marrow (BM) and the age-dependent accumulation of mtDNA mutations in this mitotically active tissue. Here, we show direct evidence of clonal expansion of cells containing mtDNA mutations and that the mtDNA sequence may be easily determined by using peripheral blood (PB) as a CD34 cell source. Analysis of 594 circulating CD34 clones showed that 150 (25%) had mtDNA sequences different from the same donor's corresponding aggregate sequence. Examination of single granulocytes indicated that 103 (29%) from the same 6 individuals showed mtDNA heterogeneity, with sequences distinct from the corresponding aggregate tissue sequence and from the sequences of other single granulocytes. Circulating and BM CD34 cells showed virtually identical patterns of mtDNA heterogeneity, and the same changes were seen in progeny granulocytes as in their progenitors, indicating that blood sampling could be used in studies to determine whether mtDNA reflects an individual's cumulative or recent exposure to mutagens; as a marker of individual hematopoietic progenitors, stem cells, and their expansion; and for the detection of minimal residual disease in hematologic malignancies of CD34 cell origin.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2003-11-3949DOI Listing

Publication Analysis

Top Keywords

mitochondrial dna
8
sequence heterogeneity
8
cd34 cells
8
mtdna
8
mtdna sequence
8
cd34 clones
8
mtdna mutations
8
cd34 cell
8
circulating cd34
8
corresponding aggregate
8

Similar Publications

Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases.

View Article and Find Full Text PDF

Porcine epidemic diarrhea virus (PEDV) induces enteritis and diarrhea in piglets. Mitochondrial DNA (mtDNA) contributes to virus-induced inflammatory responses; however, the involvement of inflammasomes in PEDV infection responses remains unclear. We investigated the mechanism underlying inflammasome-mediated interleukin (IL)-1β secretion during the PEDV infection of porcine intestinal epithelial (IPEC-J2) cells.

View Article and Find Full Text PDF

The multifunctional catalytic hemoglobin from the terebellid polychaete , also named dehaloperoxidase (DHP), utilizes the typical oxygen transport function in addition to four observed activities involved in substrate oxidation. The multifunctional ability of DHP is presently a rare observation, and there exists a limitation for how novel dehaloperoxidases can be identified from macrobenthic infauna. In order to discover more infaunal DHP-bearing candidates, we have devised a facilitated method for an accurate taxonomic identification that places visual and molecular taxonomic approaches in parallel.

View Article and Find Full Text PDF

Melanoma is an aggressive skin cancer with a high risk of cancer-related deaths, and inducing apoptosis in melanoma cells is a promising therapeutic strategy. This study investigates the anti-tumor potential of a novel lucknolide derivative LA-UC as a therapeutic candidate for melanoma. Lucknolide A (LA), a tricyclic ketal-lactone metabolite isolated from marine-derived sp.

View Article and Find Full Text PDF

Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!