The last reaction in the biosynthesis of brassinolide has been examined enzymatically. A microsomal enzyme preparation from cultured cells of Phaseolus vulgaris catalyzed a conversion from castasterone to brassinolide, indicating that castasterone 6-oxidase (brassinolide synthase) is membrane associated. This enzyme preparation also catalyzed the conversions of 6-deoxocastasterone and typhasterol to castasterone which have been reported to be catalyzed by cytochrome P450s, CYP85A1 of tomato and CYP92A6 of pea, respectively. The activities of these enzymes require molecular oxygen as well as NADPH as a cofactor. The enzyme activities were strongly inhibited by carbon monoxide, an inhibitor of cytochrome P450, and this inhibition was recovered by blue light irradiation in the presence of oxygen. Commercial cytochrome P450 inhibitors including cytochrome c, SKF 525A, 1-aminobenzotriazole and ketoconazole also inhibited the enzyme activities. The present work presents unanimous enzymological evidence that cytochrome P450s are responsible for the synthesis of brassinolide from castasterone as well as of castasterone from typhasterol and 6-deoxocastasterone, which have been deemed activation steps of BRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2004.01.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!