AvrB is a Pseudomonas syringae type III effector protein that is translocated into host plant cells during attempted pathogenesis. Arabidopsis harboring the corresponding resistance protein RPM1 can detect AvrB and mount a rapid host defense response, thus avoiding active infection. In the plant cell, AvrB induces phosphorylation of RIN4, a key component in AvrB/RPM1 recognition. Although the AvrB/RPM1 system is among the best characterized of the numerous bacterial effector/plant resistance protein systems involved in plant disease resistance and pathogenesis, the details of the molecular recognition mechanism are still unclear. To gain further insights, the crystal structure of AvrB was determined. The 2.2 A structure exhibits a novel mixed alpha/beta bilobal fold. Aided by the structural information, we demonstrate that one lobe is the determinant of AvrB/RPM1 recognition specificity. This structural information and preliminary structure-function studies provide a framework for the future understanding of AvrB function on the molecular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.str.2004.02.013 | DOI Listing |
Sci Rep
January 2025
Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.
View Article and Find Full Text PDFNat Commun
January 2025
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Extreme Conditions, Dongguan 523803, China. Electronic address:
The application of chitosan in packaging has always been limited due to its brittle and hygroscopic nature. In this study, hydrophobic short-chain fatty acids (SCFAs) were utilized to modify chitosan to overcome this issue. For the first time, hydrophobic SCFAs, typically hexanoic acid and its homologs, were found to be able to dissolve chitosan in water as well as its hydrophilic analog.
View Article and Find Full Text PDFStructure
January 2025
Department of Chemistry, Emory University, Atlanta, GA 30322, USA. Electronic address:
Thio/selenoimidazole Nπ-methyltransferases are an emerging family of enzymes catalyzing the final step in the production of the S/Se-containing histidine-derived antioxidants ovothiol and ovoselenol. These enzymes, prevalent in prokaryotes, show minimal sequence similarity to other methyltransferases, and the structural determinants of their reactivities remain poorly understood. Herein, we report ligand-bound crystal structures of OvsM from the ovoselenol pathway as well as a member of a previously unknown clade of standalone ovothiol-biosynthetic Nπ-methyltransferases, which we have designated OvoM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!