Protons cause a sustained depolarization of human dorsal root ganglion (DRG) neurons [Baumann et al. (1996) Pain, 65, 31-38]. In the present study we sought to determine which ion channels are expressed in human DRG neurons that could mediate the sustained responses observed in the patch-clamp recordings. RT-PCR of material from the DRG tissue revealed the presence of mRNAs for a nonselective cation channel that is activated by protons (TRPV1) and background potassium channels that are blocked by protons (TASK-1, TASK-3 and Kir2.3). Highly acidic solution (pH 5.4) applied to cultured DRG neurons evoked prolonged currents that were associated with a net increase in membrane conductance. Consistent with the involvement of TRPV1, these proton-evoked currents were blocked by capsazepine and were only found in neurons that responded to capsaicin with an increase in membrane conductance. Less acidic extracellular solution (pH 6.0) evoked such currents only rarely, but was able to strongly enhance the currents evoked by capsaicin. Capsazepine (1 microm) blocked the currents evoked by capsaicin at pH 7.35, as well as the potentiated responses to capsaicin at pH 6.0. In neurons that were not excited by capsaicin, moderate extracellular acidification (pH 6.0) caused a sustained decrease in resting membrane conductance. The decrease in membrane conductance by protons was associated with inhibition of background potassium channels. This excitatory effect of protons was not blocked by capsazepine. We conclude that in most neurons the sustained depolarization in response to moderately acidic solutions is the result of blocked background potassium channels. In a subset of neurons, TRPV1 also contributes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2004.03097.x | DOI Listing |
Cancer Cell Int
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.
View Article and Find Full Text PDFExpert Rev Anti Infect Ther
January 2025
Department of Medical Biostatistics, Soonchunhyang University Hospital, Seoul, Korea.
Background: Tegoprazan (TPZ), a potassium-competitive acid blocker with potent gastric acid-suppressing activity, may be a potential agent for treating Helicobacter pylori infection. The study aimed to evaluate the efficacy of TPZ-based therapy for H. pylori eradication compared with proton pump inhibitor (PPI)-based therapy.
View Article and Find Full Text PDFNutrients
January 2025
Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
Background/objectives: Food-insecure individuals are at risk for poor health outcomes, including substandard sleep health. A possible association of food insecurity with sleep regularity has not been explored, and factors contributing to the relationship between food insecurity and sleep are not well understood. This cross-sectional study explored the relationship between food insecurity and sleep regularity and identified specific nutrients that mediated the association.
View Article and Find Full Text PDFNutrients
January 2025
Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
Background/objectives: Inadequate micronutrient intakes are common in individuals with overweight/obesityand can exacerbate cardiovascular and metabolic disease risk. Diet and exercise are primary strategies for managing overweight and may influence nutrient intakes. In this secondary analysis of dietary data collected in a randomized controlled trial (RCT, ClinicalTrials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!