A synaptosomal preparation was employed to pharmacologically characterize the role of presynaptic nociceptin/orphanin FQ (N/OFQ) receptors (NOP receptors) in the regulation of 5-hydroxytryptamine release in the Swiss mouse neocortex. In the present study, the NOP receptor ligands N/OFQ, Ac-RYYRWK-NH(2) and [Phe(1)psi(CH(2)-NH)Gly(2)]N/OFQ(1-13)-NH(2) inhibited the K(+)-induced [(3)H]-5-HT overflow with similar maximal effects ( approximately -35%) but different potencies (pEC(50) of 8.56, 8.35 and 7.23, respectively). The novel agonist [Arg(14),Lys(15)]N/OFQ also inhibited [(3)H]-5-HT overflow, but the concentration-response curve was biphasic and the efficacy higher ( approximately -45%). Receptor selectivity of NOP receptor agonists was demonstrated by showing that synaptosomes from NOP receptor knockout mice were unresponsive to N/OFQ, [Arg(14),Lys(15)]N/OFQ and [Phe(1)psi(CH(2)-NH)Gly(2)]N/OFQ(1-13)-NH(2) but maintained full responsiveness to endomorphin-1. Moreover, the inhibitory effect of N/OFQ was prevented by peptide ([Nphe(1)]N/OFQ(1-13)-NH(2) and UFP-101) and nonpeptide (J-113397 and JTC-801) NOP receptor selective antagonists. Desensitization occurred under perfusion with high (3 and 10 microm) N/OFQ concentrations. This phenomenon was prevented by the protein kinase C inhibitor, bisindolylmaleimide. Moreover, N/OFQ-induced desensitization did not affect mu opioid receptor responsiveness. Finally, it was observed in a similar preparation of rat cerebrocortical synaptosomes, although it was induced by higher N/OFQ concentrations than that used in the mouse. Together, these findings indicate that presynaptic NOP receptors inhibit 5-hydroxytryptamine release in the mouse neocortex. Based on present and previous studies, we conclude that NOP receptors in the mouse are subtly different from the homologous receptor population in the rat, strengthening the view that there exist species differences in the pharmacology of central NOP receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2004.03220.xDOI Listing

Publication Analysis

Top Keywords

nop receptors
16
nop receptor
16
5-hydroxytryptamine release
12
mouse neocortex
12
release mouse
8
nop
8
[3h]-5-ht overflow
8
n/ofq concentrations
8
receptor
7
receptors
6

Similar Publications

Recommended Opioid Receptor Tool Compounds: Comparative for Receptor Selectivity Profiles and for Pharmacological Antinociceptive Profiles.

ACS Pharmacol Transl Sci

January 2025

Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including S-GTPγS functional and cAMP based assays.

View Article and Find Full Text PDF

The N/OFQ-NOP receptor is a fascinating peptidergic system with the potential to be exploited for the development of analgesic drugs devoid of side effects associated with classical opioid signalling modulation. To date, up to four X-ray and cryo-EM structures of the NOP receptor in complex with the endogenous peptide agonist N/OFQ and three small molecule antagonists have been solved and released. Despite the available structural information, the details of selective small molecule agonist binding to the NOP receptor in the active state remain elusive.

View Article and Find Full Text PDF

Nuclear Factor-κB Signaling Regulates the Nociceptin Receptor but Not Nociceptin Itself.

Cells

December 2024

Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.

The nociceptin receptor (NOP) and nociceptin are involved in the pathways of pain and inflammation. The potent role of nuclear factor-κB (NFκB) in the modulation of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β on the nociceptin system in human THP-1 cells under inflammatory conditions were investigated. Cells were stimulated without/with phorbol-myristate-acetate (PMA), TNF-α, IL-1β, or PMA combined with individual cytokines.

View Article and Find Full Text PDF

The endocannabinoid system (ECS) and nociceptin receptor (NOP) have been implicated in the pathology of inflammatory bowel diseases (IBD) mediating pain and alleviating inflammation. In this study we searched for the possible activation of ECS and NOP system and the correlation between CB1, CB2 and NOP receptors in IBD patients. Patients diagnosed with IBDs who underwent colonic surgical resection or biopsy at colonoscopy and control group (patients without diagnosis of IBD, which colonoscopy for the different medical indications) were recruited into the study.

View Article and Find Full Text PDF

The impact of endogenous N/OFQ on DPN: Insights into lower limb blood flow regulation in rats.

Neuropeptides

January 2025

College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China. Electronic address:

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, often accompanied by impaired vascular endothelial function in the lower limbs. This dysfunction is characterized by a reduced vasodilatory response, leading to decreased blood flow in the lower limbs and ultimately contributing to the development of diabetic peripheral neuropathy. To delve deeper into this pathological process, the study employed bioinformatics to identify and analyze genes highly active in DPN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!