[The study of characteristics of absorption and separation of different glycoside on macropore resins].

Zhongguo Zhong Yao Za Zhi

Pharmaceutical Laboratory of Chinese Materia Medica, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China.

Published: March 2003

Objective: To study the absorption and separation of different glycoside on different macropore resins.

Method: Take baikal skullcap root, cape jasmine fruit and white peony root as samples and study the different characterstics of absorption and separation of these samples on macropore resins such as D101 and so on.

Result: The static absorption effect of the the three aglycones on six different macropore resins is baicalin > lactiflorin > gardoside. Their elution are 75% CH3OH, 25% CH3OH, and 45% CH3OH. Their elution rates are 60%, 93%, and 93%.

Conclusion: Similar molecules may not have similar absorption abilities on same macropore resins, but the effect of absorption has something to do with the structures of the molecules, the more double-bonds the molecules have, the greater the absorption force the resins have.

Download full-text PDF

Source

Publication Analysis

Top Keywords

absorption separation
12
macropore resins
12
separation glycoside
8
glycoside macropore
8
absorption
7
macropore
5
[the study
4
study characteristics
4
characteristics absorption
4
macropore resins]
4

Similar Publications

Cisplatin-based platinum compounds are important clinical chemotherapeutic agents that participate in most tumor chemotherapy regimens. Through density-functional theory calculations, the formation and stability of the inorganic oxide carrier, the mechanisms of the hydrolysis reaction of the activated platinum compound, and its binding mechanism with DNA bases can be studied. The higher the oxidation state of Pt (II to IV), the more electrons transfer from the magnesia-gold composite material to the platinum compound.

View Article and Find Full Text PDF

"Chasing Rainbows" Beyond Kaposi Sarcoma's Dermoscopy: A Mini-Review.

Dermatopathology (Basel)

November 2024

Second Dermatology Department, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

The dermoscopic rainbow pattern (RP), also known as polychromatic pattern, is characterized by a multicolored appearance, resulting from the dispersion of polarized light as it penetrates various tissue components. Its separation into different wavelengths occurs according to the physics principles of scattering, absorption, and interference of light, creating the optical effect of RP. Even though the RP is regarded as a highly specific dermoscopic indicator of Kaposi's sarcoma, in the medical literature, it has also been documented as an atypical dermoscopic finding of other non-Kaposi skin entities.

View Article and Find Full Text PDF

Highly efficient photocatalysts for degrading persistent antibiotics and synthetic dye pollutants under visible light are crucial for sustainable environmental remediation. In this study, we engineered a novel BiMoO (BMO)/NiAl-LDH (layered double hydroxide) hybrid catalyst with a unique 2D/2D heterostructure, optimized for the visible-light-driven elimination of ciprofloxacin (CPF) and hazardous synthetic dyes such as rhodamine B and methylene blue. The optimized BMO-30/LDH hybrid demonstrated exceptional photocatalytic performance, achieving nearly complete degradation of CPF and synthetic dyes with high mineralization efficiency, surpassing many previously reported state-of-the-art photocatalysts.

View Article and Find Full Text PDF

Achieving efficient and sustainable hydrogen production through photocatalysis is highly promising yet remains a significant challenge, especially when replacing costly noble metals with more abundant alternatives. Conversion efficiency with noble-metal-free alternatives is frequently limited by high charge recombination rates, mainly due to the sluggish transfer and inefficient consumption of photo-generated holes. To address these challenges, a rational design of noble-metal-free cocatalysts as oxidative sites is reported to facilitate hole consumption, leading to markedly increased H yield rates without relying on expensive noble metals.

View Article and Find Full Text PDF

Highly Compressible Micro/Nanofibrous Sponges with Thin-Walled Cavity Structures Enable Low-Frequency Noise Reduction.

Nano Lett

December 2024

Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China.

Increasing noise pollution has generated a tremendous threat to human health and incurred great economic losses. However, most existing noise-absorbing materials present a significant challenge in achieving lightweight, robust mechanical stability, and efficient low-frequency (<1000 Hz) noise reduction. Herein, we create highly compressible micro/nanofibrous sponges with thin-walled cavity structures for efficient noise reduction through electrospinning and dispersion casting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!