Development of medical guide wire of Cu-Al-Mn-base superelastic alloy with functionally graded characteristics.

J Biomed Mater Res B Appl Biomater

Department of Materials Science, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Sendai 980-8579, Japan.

Published: April 2004

A new type of medical guide wire with functionally graded hardness from the tip to the end was developed with the use of Cu-Al-Mn-based alloys. The superelasticity (SE) of the Cu-Al-Mn-based alloys in the tip is drastically improved by controlling the grain size, whereas the end of the wire is hardened using bainitic transformation by aging at around 200-400 degrees C. Therefore, the tip of the guide wire shows a superelasticity and its end has high stiffness. This guide wire with functionally graded characteristics shows excellent pushability and torquability, superior to that of the Ni-Ti guide wire.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.10079DOI Listing

Publication Analysis

Top Keywords

guide wire
20
functionally graded
12
medical guide
8
graded characteristics
8
wire functionally
8
cu-al-mn-based alloys
8
wire
6
guide
5
development medical
4
wire cu-al-mn-base
4

Similar Publications

Background: Severe vessel tortuosity may prevent a microcatheter from reaching a distal vessel. However, the Double-Wire Technique (DWT) may facilitate the procedure. The present study evaluated the feasibility and safety of guiding a 0.

View Article and Find Full Text PDF

Spontaneous Cargo Transport via Sliding Bubbles on a Superhydrophobic Wire.

Langmuir

December 2024

Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China.

The transportation and carrying behavior of underwater bubbles have been widely used for an underwater microactuator, cargo displacement assembly, and drug delivery. This study explores a method for underwater cargo transportation using sliding bubbles as a vehicle with directionally guided superhydrophobic wires. By exploitation of the adhesion between superhydrophobic surfaces and bubble interfaces, a bubble is able to transport a superhydrophobic O-ring along a superhydrophobic wire, effectively delivering the O-ring to the water surface.

View Article and Find Full Text PDF

Background: Although fractional flow reserve (FFR) is the contemporary standard to detect hemodynamically significant coronary stenosis, it remains underused for the need of pressure wire and hyperemic stimulus. Coronary angiography-derived FFR could break through these barriers. The aim of this study was to assess the feasibility and performance of a novel diagnostic modality deriving FFR from invasive coronary angiography (AccuFFRangio) for coronary physiological assessment.

View Article and Find Full Text PDF

Background: Iatrogenic suprascapular nerve injury secondary to posterior drilling or screw penetration is a recognized complication of bone block or coracoid process transfers for anterior glenohumeral instability. We present the first cadaveric study that assesses the safety of posteroanterior reference guides and quantifies the relationship of the suprascapular nerve to posterior glenoid fixation with suture buttons.

Methods: Anterior glenoid bone block reconstruction with suture buttons utilizing a posteroanterior reference guide was performed in 10 fresh frozen cadavers via a posterior portal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!