How failures in regulation of synaptic transmission in the mammalian CNS affect neuronal activity and disturb motor coordination is addressed. The mutant mouse deficient in the glutamate receptor delta2 subunit, specifically expressed in cerebellar Purkinje neurons, has defects in synaptic regulations such as synaptic plasticity, stabilization, and elimination of synaptic connections and shows failures in motor coordination and learning. In this study, the cause of motor discoordination of the delta2 mutant mouse was analyzed by comparing its motor control ability with those of the wild-type mouse and the lurcher mutant mouse, which loses all Purkinje neurons, the sole output neurons in the cerebellar cortex. Unexpectedly, the delta2 mutant mouse showed severer motor discoordination than the lurcher mouse without any cerebellar cortical outputs. The delta2 mutant mouse showed involuntary spontaneous eye movement with characteristic 10 Hz oscillation, which disappeared by ablation of the cerebellar flocculus, suggesting that the delta2 mutant cerebellar cortex outputs an abnormal signal. In vivo extracellular recordings of neuronal activity revealed that Purkinje neurons tended to fire clustered action potentials and complex spikes at approximately 10 Hz in the delta2 mutant mouse. A whole-cell patch-clamp recording from Purkinje neurons in cerebellar slices indicated that the clustered action potentials could be induced by climbing fiber activation. Taken together, our results suggest that the delta2 subunit deficiency produces the oscillating activity in Purkinje neurons by enhancing climbing fiber inputs, causing surplus movement and affecting motor control worse than no signal at all.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729495 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0783-03.2004 | DOI Listing |
Methods Mol Biol
January 2025
Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
Mosaic Analysis with Double Markers (MADM) represents a mouse genetic approach coupling differential fluorescent labeling to genetic manipulations in dividing cells and their lineages. MADM uniquely enables the generation and visualization of individual control or homozygous mutant cells in a heterozygous genetic environment. Among its diverse applications, MADM has been used to dissect cell-autonomous gene functions important for cortical development and neural development in general.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA.
Protein kinase R (PKR) is an interferon-induced antiviral protein activated by autophosphorylation in response to double strand DNA (dsRNA) and other stimuli. Activated PKR causes translation inhibition and apoptosis, and it contributes to proinflammatory responses, cell growth, and differentiation. Mouse adenovirus type 1 (MAV-1) counteracts PKR by causing its degradation via a viral protein, early region 4 open reading frame 6 (E4orf6).
View Article and Find Full Text PDFInfect Immun
December 2024
Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.
Type III protein secretion systems (T3SSs) function as multiprotein devices that span the envelope of Gram-negative bacteria using the peptidoglycan (PG) layer as scaffold. This spatial arrangement explains why modifications in PG structure can alter T3SS activity. In incorporation of non-canonical D-amino acids in the PG was shown to decrease the activity of the T3SS encoded by the pathogenicity island-1 (SPI-1) without affecting other T3SS, like the flagellum apparatus.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China.
Determining mutations in the kinase domain of the epidermal growth factor receptor (EGFR) is critical for the effectiveness of EGFR tyrosine kinase inhibitors (TKIs) in lung cancer. Yet, DNA-based sequencing analysis of tumor samples is time-consuming and only provides gene mutation information on EGFR, making it challenging to design effective EGFR-TKI therapeutic strategies. Here, we present a new image-based method involving the rational design of a quenched probe based on EGFR-TKI to identify mutant proteins, which permits specific and "no-wash" real-time imaging of EGFR in living cells only upon covalent targeting of the EGFR kinase.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Medicine, Division of Hematology/Oncology, and.
Clonal hematopoiesis (CH) is a condition in which hematopoietic stem cells (HSCs) acquire mutations seen in leukemia. While individuals with CH generally do not show signs of hematologic disease, the condition becomes more common with age and correlates with age-related diseases, especially cardiovascular disease (CVD). JAK2 mutations in HSCs can lead to CH and correlate with atherosclerosis, but the condition has been difficult to study because of challenges modeling the mutant cells at very low frequency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!