The DNA damage clamp loader replication factor C (RFC-Rad24) consists of the Rad24 protein and the four small Rfc2-5 subunits of RFC. This complex loads the heterotrimeric DNA damage clamp consisting of Rad17, Mec3, and Ddc1 (Rad17/3/1) onto partial duplex DNA in an ATP-dependent manner. Interactions between the clamp loader and the clamp have been proposed to mirror those of the replication clamp loader RFC and the sliding clamp proliferating cell nuclear antigen (PCNA). In that system, three ATP molecules bound to the Rfc2, Rfc3, and Rfc4 subunits are necessary and sufficient for efficient loading of PCNA, whereas ATP binding to Rfc1 is not required. In contrast, in this study, we show that mutant RFC-Rad24 with a rad24-K115E mutation in the ATP-binding domain of Rad24 shows defects in the ATPase of the complex and is defective for interaction with Rad17/3/1 and for loading of the checkpoint clamp. A similar defect was measured with a mutant RFC-Rad24 clamp loader carrying a rfc4K55R ATP-binding mutation, whereas the rfc4K55E clamp loader showed partial loading activity, in agreement with genetic studies of these mutants. These studies show that ATP utilization by the checkpoint clamp/clamp loader system is effectively different from that by the structurally analogous replication system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M400898200 | DOI Listing |
PLoS Genet
December 2024
Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom.
During meiosis, programmed DNA double-strand breaks (DSBs) are formed by the topoisomerase-like enzyme, Spo11, activating the DNA damage response (DDR) kinase Mec1ATR via the checkpoint clamp loader, Rad24RAD17. At single loci, loss of Mec1 and Rad24 activity alters DSB formation and recombination outcome, but their genome-wide roles have not been examined in detail. Here, we utilise two strategies-deletion of the mismatch repair protein, Msh2, and control of meiotic prophase length via regulation of the Ndt80 transcription factor-to help characterise the roles Mec1 and Rad24 play in meiotic recombination by enabling genome-wide mapping of meiotic progeny.
View Article and Find Full Text PDFMethods Enzymol
October 2024
Department of Chemistry, The Pennsylvania State University, University Park, PA, United States. Electronic address:
In humans, DNA polymerase δ (pol δ) holoenzymes, comprised of pol δ and the processivity sliding clamp, proliferating cell nuclear antigen (PCNA), carry out DNA synthesis during lagging strand replication, the initiation of leading strand DNA replication as well as most of the major DNA damage repair pathways. In each of these contexts, pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a stepwise process that involves the PCNA clamp loader, replication factor C and, depending on the DNA synthesis pathway, the major single strand DNA-binding protein complex, replication protein A (RPA). In a recent report from our laboratory, we designed and utilized direct, ensemble Förster Resonance Energy Transfer approaches to monitor the transient state kinetics of pol δ holoenzyme assembly and initiation of DNA synthesis on P/T junctions engaged by RPA.
View Article and Find Full Text PDFNat Commun
September 2024
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
Ring-shaped DNA sliding clamps are essential for DNA replication and genome maintenance. Clamps need to be opened and chaperoned onto DNA by clamp loader complexes (CLCs). Detailed understanding of the mechanisms by which CLCs open and place clamps around DNA remains incomplete.
View Article and Find Full Text PDFJ Biol Chem
October 2024
Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA. Electronic address:
The τ-subunit of the clamp loader complex physically interacts with both the DnaB helicase and the polymerase III (Pol III) core α-subunit through domains IV and V, respectively. This interaction is proposed to help maintain rapid and efficient DNA synthesis rates with high genomic fidelity and plasticity, facilitating enzymatic coupling within the replisome. To test this hypothesis, CRISPR-Cas9 editing was used to create site-directed genomic mutations within the dnaX gene at the C terminus of τ predicted to interact with the α-subunit of Pol III.
View Article and Find Full Text PDFGenes Cells
November 2024
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan.
Ganciclovir (GCV) is a clinically important drug as it is used to treat viral infections. GCV is incorporated into the DNA during replication, where it interferes with subsequent replication on GCV-incorporated templates. However, the effects of GCV on the host genome and the mechanisms underlying cellular tolerance to GCV remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!