Systemic resistance induced by rhizosphere bacteria.

Annu Rev Phytopathol

Department of Plant Ecology and Evolutionary Biology, Utrecht University, TB Utrecht, The Netherlands.

Published: May 2004

Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean, carnation, cucumber, radish, tobacco, and tomato under conditions in which the inducing bacteria and the challenging pathogen remained spatially separated. Bacterial strains differ in their ability to induce resistance in different plant species, and plants show variation in the expression of ISR upon induction by specific bacterial strains. Bacterial determinants of ISR include lipopolysaccharides, siderophores, and salicylic acid (SA). Whereas some of the rhizobacteria induce resistance through the SA-dependent SAR pathway, others do not and require jasmonic acid and ethylene perception by the plant for ISR to develop. No consistent host plant alterations are associated with the induced state, but upon challenge inoculation, resistance responses are accelerated and enhanced. ISR is effective under field conditions and offers a natural mechanism for biological control of plant disease.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.phyto.36.1.453DOI Listing

Publication Analysis

Top Keywords

systemic resistance
12
rhizobacteria induce
8
bacterial strains
8
induce resistance
8
resistance
6
isr
5
systemic
4
resistance induced
4
induced rhizosphere
4
rhizosphere bacteria
4

Similar Publications

Arterial compliance (AC) is an important cardiovascular parameter characterizing mechanical properties of arteries. AC is significantly influenced by arterial wall structure and vasomotion, and it markedly influences cardiac load. A new method, based on a two-element Windkessel model, has been recently proposed for estimating AC as the ratio of the time constant T of the diastolic blood pressure decay and peripheral vascular resistance derived from clinically available stroke volume measurements and selected peripheral blood pressure parameters which are less prone to peripheral distortions.

View Article and Find Full Text PDF

Radiotherapy is an integral component in the treatment of many types of cancer, with approximately half of cancer patients receiving radiotherapy. Systemic therapy applies pressure that can select for resistant tumor subpopulations, underscoring the importance of understanding how radiation impacts tumor evolution to improve treatment outcomes. We integrated temporal genomic profiling of 120 spatially distinct tumor regions from 20 patients with undifferentiated pleomorphic sarcomas (UPS), longitudinal circulating tumor DNA (ctDNA) analysis, and evolutionary biology computational pipelines to study UPS evolution during tumorigenesis and in response to radiotherapy.

View Article and Find Full Text PDF

Unmasking High-Output Heart Failure: Beyond Conventional Paradigms.

Cardiol Rev

January 2025

From the Department of Internal Medicine, Division of Cardiology, Wayne State University, Detroit, MI.

Heart failure (HF) poses a significant medical challenge, affecting millions of adults in the United States. High-output heart failure (HOHF) is a distinct subtype characterized by elevated cardiac output exceeding 8 L/min or a cardiac index >4 L/min/m². Patients with HOHF often present similarly to those with heart failure with reduced ejection fraction and heart failure with preserved ejection fraction.

View Article and Find Full Text PDF

Cancer remains a global health threat, with traditional treatments limited by adverse effects and drug resistance. Nanozyme-based catalytic therapy with high stability and controllable activity provides targeted and specific in situ tumor treatment to address these challenges. More intriguingly, the tremendous advances in nanotechnology have enabled nanozymes to rival the catalytic activity of natural enzymes, presenting an exciting opportunity for innovating antitumor nanodrugs.

View Article and Find Full Text PDF

The treatment of canine transmissible venereal tumour (CTVT) has evolved since its initial description in 1810. Initially considered untreatable in the early 20th century, extensive research over time has significantly advanced our understanding of its aetiopathogenesis. This led to successful chemotherapy treatments, which have shown superior outcomes compared to surgical interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!