SILICON.

Annu Rev Plant Physiol Plant Mol Biol

Department of Land, Air and Water Resources-Soils and Biogeochemistry, University of California at Davis, Davis, California 95616-8627; e-mail:

Published: June 1999

AI Article Synopsis

  • Silicon is found in plants at levels comparable to essential macronutrients like calcium and phosphorus, particularly in grasses.
  • Despite its prevalence, silicon is often disregarded in plant research and culture solutions, except for specific groups like diatoms and horsetails.
  • Research indicates that silicon-deprived plants exhibit structural weaknesses and increased susceptibility to stressors and diseases, suggesting that silicon is crucial for overall plant health and should be recognized as an important element in plant physiology.

Article Abstract

Silicon is present in plants in amounts equivalent to those of such macronutrient elements as calcium, magnesium, and phosphorus, and in grasses often at higher levels than any other inorganic constituent. Yet except for certain algae, including prominently the diatoms, and the Equisetaceae (horsetails or scouring rushes), it is not considered an essential element for plants. As a result it is routinely omitted from formulations of culture solutions and considered a nonentity in much of plant physiological research. But silicon-deprived plants grown in conventional nutrient solutions to which silicon has not been added are in many ways experimental artifacts. They are often structurally weaker than silicon-replete plants, abnormal in growth, development, viability, and reproduction, more susceptible to such abiotic stresses as metal toxicities, and easier prey to disease organisms and to herbivores ranging from phytophagous insects to mammals. Many of these same conditions afflict plants in silicon-poor soils-and there are such. Taken together, the evidence is overwhelming that silicon should be included among the elements having a major bearing on plant life.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.arplant.50.1.641DOI Listing

Publication Analysis

Top Keywords

plants
5
silicon silicon
4
silicon plants
4
plants amounts
4
amounts equivalent
4
equivalent macronutrient
4
macronutrient elements
4
elements calcium
4
calcium magnesium
4
magnesium phosphorus
4

Similar Publications

The timely detection of viral pathogens in vineyards is a critical aspect of management. Diagnostic methods can be labor-intensive and may require specialized training or facilities. The emergence of artificial intelligence (AI) has the potential to provide innovative solutions for disease detection but requires a significant volume of high-quality data as input.

View Article and Find Full Text PDF

Aggressiveness and phylogenetic relationship of associated with crown and root rot in pyrethrum plants.

Plant Dis

January 2025

The University of Melbourne, Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, Parkville, Victoria, Australia;

In Australia, pyrethrum (Tanacetum cinerariifolium) cultivation provides a significant portion of the global supply of natural insecticidal pyrethrins. However, crown and root rots, along with stunted plant growth and plant loss during winter, are significant issues affecting certain sites. Several isolates of the Fusarium oxysporum species complex (FOSC) have been identified as causal agents of crown and root rot in pyrethrum, highlighting these as key pathogens contributing to this decline.

View Article and Find Full Text PDF

Crop rotation effects on the population density of soybean soilborne pathogens under no-till cropping system.

Plant Dis

January 2025

USDA-ARS North Central Agricultural Research Laboratory, Brookings, South Dakota, United States;

Soilborne diseases are persistent problems in soybean production. Long-term crop rotation can contribute to soilborne disease management. However, the response of soilborne pathogens to crop rotation is inconsistent, and rotation efficacy is highly variable.

View Article and Find Full Text PDF

While recycling irrigation water can reduce water use constraints and costs in nurseries, adoption is hindered by the associated risk of recirculating and spreading waterborne pathogens. To enable regional water re-use, this study assessed oomycete re-circulation risks and recycled water treatment efficacy at organismal and community scales. In culture-based analysis of recycled pond water at two Mid-Atlantic nurseries across three years, diverse oomycetes (12+ species) were detected using culture-based analysis, with Phytopythium helicoides as the dominant species; MiSeq analysis detected eight of these species, plus 24 additional taxa.

View Article and Find Full Text PDF

Genomic Epidemiology of Strains That Caused the Fire Blight Outbreak in Korea.

Plant Dis

January 2025

50 Yonsei-ro, Seodaemun-guSeoul, Korea (the Republic of), 03722;

Fire blight, a devastating bacterial disease affecting rosaceous plants such as apples and pears, is caused by . The disease, known for its rapid spread and destructive potential, can lead to severe symptoms and often result in the death of infected plants. In Korea, the observation of was first recorded in 2015, and subsequent dissemination has been noted across the peninsula.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!