In vivo molecular and genomic imaging: new challenges for imaging physics.

Phys Med Biol

Department of Biomedical Engineering, University of California, Davis, CA, USA.

Published: February 2004

The emerging and rapidly growing field of molecular and genomic imaging is providing new opportunities to directly visualize the biology of living organisms. By combining our growing knowledge regarding the role of specific genes and proteins in human health and disease, with novel ways to target these entities in a manner that produces an externally detectable signal, it is becoming increasingly possible to visualize and quantify specific biological processes in a non-invasive manner. All the major imaging modalities are contributing to this new field, each with its unique mechanisms for generating contrast and trade-offs in spatial resolution, temporal resolution and sensitivity with respect to the biological process of interest. Much of the development in molecular imaging is currently being carried out in animal models of disease, but as the field matures and with the development of more individualized medicine and the molecular targeting of new therapeutics, clinical translation is inevitable and will likely forever change our approach to diagnostic imaging. This review provides an introduction to the field of molecular imaging for readers who are not experts in the biological sciences and discusses the opportunities to apply a broad range of imaging technologies to better understand the biology of human health and disease. It also provides a brief review of the imaging technology (particularly for x-ray, nuclear and optical imaging) that is being developed to support this new field.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/49/3/r01DOI Listing

Publication Analysis

Top Keywords

imaging
10
molecular genomic
8
genomic imaging
8
field molecular
8
human health
8
health disease
8
molecular imaging
8
field
5
vivo molecular
4
imaging challenges
4

Similar Publications

Evaluation of a Deep Learning Denoising Algorithm for Dose Reduction in Whole-Body Photon-Counting CT Imaging: A Cadaveric Study.

Acad Radiol

January 2025

Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany (R.D., J.M.B., B.S., J.M., S.G., P.K., S.W., J.H., K.N., S.A., A.B.).

Rationale And Objectives: Photon Counting CT (PCCT) offers advanced imaging capabilities with potential for substantial radiation dose reduction; however, achieving this without compromising image quality remains a challenge due to increased noise at lower doses. This study aims to evaluate the effectiveness of a deep learning (DL)-based denoising algorithm in maintaining diagnostic image quality in whole-body PCCT imaging at reduced radiation levels, using real intraindividual cadaveric scans.

Materials And Methods: Twenty-four cadaveric human bodies underwent whole-body CT scans on a PCCT scanner (NAEOTOM Alpha, Siemens Healthineers) at four different dose levels (100%, 50%, 25%, and 10% mAs).

View Article and Find Full Text PDF

Rationale And Objectives: Alzheimer's disease (AD) is the most common pathogenesis of dementia, and mild cognitive impairment (MCI) is considered as the intermediate stage from normal elderly to AD. Early detection of MCI is an essential step for the timely intervention of AD to slow the progression of this disease. Different form previous studies in the whole-brain spontaneous activities, this research aimed to explore the low-frequency amplitude spectrum activities of patients with MCI within the default mode network (DMN), which has been involved in the process of maintaining normal cognitive function.

View Article and Find Full Text PDF

Artificial intelligence in emergency neuroradiology: Opportunities and challenges ahead.

Diagn Interv Imaging

January 2025

Department of Neuroradiology, Hôpital Fondation Adolphe de Rothschild, 75019, Paris, France; Université Paris Cité, Faculté de Médecine, 75006 Paris, France. Electronic address:

View Article and Find Full Text PDF

First in-human gadolinium K-edge imaging with spectral photon counting CT.

Diagn Interv Imaging

January 2025

Department of Cardiovascular and Thoracic Radiology, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon 69002, France; CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, University Claude Bernard Lyon 1, Villeurbanne 69100, France.

View Article and Find Full Text PDF

Impact of orthognathic surgery on the cheek area using the Barcelona line.

Int J Oral Maxillofac Surg

January 2025

Department of Oral and Maxillofacial Surgery, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona, Spain; Maxillofacial Institute, Teknon Medical Center, Barcelona, Spain.

A facial appearance of premature aging due to poor bone support of the soft tissues is frequently found in patients with midface hypoplasia. This study was performed to evaluate the changes in the soft tissues of the cheek area in patients subjected to bimaxillary orthognathic surgery. The cheek line angle and length of 27 consecutive patients who underwent bimaxillary surgery, were measured on cone beam computed tomography scans obtained before surgery and at 1 and 12 months after surgery using 3D software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!