A potent inhibitor of serine/threonine kinases, staurosporine exerts antiproliferative and apoptotic effects in many cancer cells, although the exact mechanism of its action is still unclear. This study examines the effects of staurosporine on Chang liver cells, an immortalized non-tumor cell line, in comparison with those caused in HuH-6 and HepG2 cells, two human hepatoma cell lines. Our results provide evidence that staurosporine promotes apoptosis in Chang liver cells as observed by flow cytometric analysis and acridine orange/ethidium bromide staining. The effect appeared already after 8 h of treatment and increased with treatment time and dose. After 48 h of exposure to 200 nM staurosporine clear apoptotic signs were observed in about 50% of the cells. Western blotting analysis showed that in Chang liver cells staurosporine induced a marked decrease in the levels of the antiapoptotic factors Bcl-2 (-75%) and Bcl-XL (-50%). Staurosporine also caused loss of mitochondrial transmembrane potential, release of cytochrome c from mitochondria and activation of caspase-3. The involvement of caspases in staurosporine-induced cell death was also suggested by the observation that the addition of z-VAD-fmk, a general inhibitor of caspases, suppressed apoptosis. In HuH-6 and HepG2 cells treatment with staurosporine induced the arrest of cells in G2/M phase of cell cycle. This effect was not modified by z-VAD-fmk and was not accompanied by the appearance of biochemical signs of apoptosis. We conclude that staurosporine induced apoptosis in Chang liver cells by a mitochondria-caspase-dependent pathway which was closely correlated with a decrease in Bcl-2 and Bcl-XL levels, while in HuH-6 and HepG2 hepatoma cells the drug caused only an antiproliferative effect.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chang liver
20
liver cells
20
apoptosis chang
12
huh-6 hepg2
12
staurosporine induced
12
cells
11
bcl-2 bcl-xl
8
staurosporine
8
hepg2 cells
8
chang
5

Similar Publications

Hepatocellular carcinoma (HCC) is by far the predominant malignant liver cancer, with both high morbidity and mortality. Early diagnosis and surgical resections are imperative for improving the survival of HCC patients. However, limited by clinical diagnosis methods, it is difficult to accurately distinguish tumor tissue and its boundaries in the early stages of cancer.

View Article and Find Full Text PDF

Microplastic and nanoplastic exposure and risk of diabetes mellitus.

World J Clin Cases

January 2025

Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 33305, Taoyuan, Taiwan.

The issue of plastic pollutants has become a growing concern. Both microplastics (MPs) (particle size < 5 mm) and nanoplastics (NPs) (particle size < 1 µm) can cause DNA damage, cytotoxicity, and oxidative stress in various organisms. The primary known impacts of microplastic/nanoplastic are observed in the liver and respiratory system, leading to hepatotoxicity and chronic obstructive pulmonary disease.

View Article and Find Full Text PDF

Background: Rho GTPases are essential regulators for cellular movement and intracellular membrane trafficking. Their enzymatic activities fluctuate between active GTP-bound and inactive GDP-bound states regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39/Vilse/Porf-2 is a newly identified GAP.

View Article and Find Full Text PDF

Factors Influencing Knowledge-Action Gap in Patients With Metabolic Dysfunction-Associated Fatty Liver Disease: A Qualitative Study.

J Nutr Educ Behav

January 2025

Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China. Electronic address:

Objective: To explore the knowledge-action gap regarding health behaviors and their influencing factors among patients with metabolic dysfunction-associated fatty liver disease (MAFLD), using the Health Belief Model as a theoretical framework.

Design: A qualitative approach was adopted, involving semistructured interviews with individuals with MAFLD.

Setting: Participants were recruited from a community hospital and a tertiary hospital in Nanjing, China, between July and October 2022.

View Article and Find Full Text PDF

Liver fibrosis is a persistent damage repair response triggered by various etiological factors, resulting in an excessive accumulation of extracellular matrix (ECM). Activated hepatic stellate cells (HpSCs) are the primary source of ECM proteins. Therefore, specifically targeting HpSCs has become a crucial approach for treating liver fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!