A cDNA encoding a member of the R2R3-MYB family of transcription factors was cloned from a library constructed from differentiating Pinus taeda (loblolly pine) xylem RNA. This MYB family member, Pinus taeda MYB1 (PtMYB1), was most abundantly expressed in differentiating xylem, as assessed by both ribonuclease protection assays, and by northern blot analysis with poly(A)-enriched RNA. Similar to other plant R2R3-MYB family members, recombinant Pt MYB1 protein was able to bind to AC elements in electrophoretic mobility shift assays (EMSAs). AC elements are DNA motifs rich in adenosine and cytosine that have been implicated in the xylem-localised regulation of genes encoding lignin biosynthetic enzymes. Pt MYB1 not only bound to AC elements, but was also able to induce AC-element-dependent shifts in the electrophoretic mobility of a plant promoter that contains three AC elements, the minimal PHENYLALANINE AMMONIA-LYASE 2 (PAL2) promoter from Phaseolus vulgaris. Transcriptional activation assays conducted using yeast showed that Pt MYB1 also activated transcription, and that it did so in an AC-element-dependent fashion. Pt MYB1 also activated transcription from the minimal PAL2 promoter in plant cells in an AC-element-dependent fashion, as revealed by transient transcriptional activation assays with microprojectile-bombarded tobacco NT-1 cells. Taken together, these finding are consistent with the hypothesis that Pt MYB1 may regulate transcription from cis -acting AC elements in pine xylem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/B:PLAN.0000019066.07933.d6 | DOI Listing |
Int J Mol Sci
January 2025
State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.
Terpenoids, abundant and structurally diverse secondary metabolites in plants, especially in conifer species, play crucial roles in the plant defense mechanism and plant growth and development. In , terpenoids' biosynthesis relies on both the mevalonate (MVA) pathway and the 2-methyl-D-erythritol-4-phosphate (MEP) pathway, with 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS) catalyzing the sixth step of the MEP pathway. In this study, we cloned and conducted bioinformatics analysis of the gene from .
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
College of Forestry, Northeast Forestry University/Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Harbin 150040, China.
We analyzed the differences in knot property of linear and curved knots of dominant, medium, and inferior wood with thirty-three trees from Mengjiagang Forest Farm and Linkou Forestry Bureau in Heilongjiang Province. We divided the 33 trees into two groups according to the height of the site index. We constructed a trunk diameter growth models to explore the connection, between the knot growth inflection points and the successive growth of diameter, and to screen for the types that had a weaker impact on wood quality.
View Article and Find Full Text PDFPlant J
December 2024
Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
The distributions of monolignol glucosides (MLGs) in compression and opposite woods of Pinus thunbergii were assessed using cryo-time-of-flight secondary ion mass spectrometry to investigate their involvement in lignification. p-Glucocoumaryl alcohol (PG) was identified in the region of the differentiating xylem adjacent to the cambial zone only in compression wood, whereas coniferin (CF) was similarly localized in both compression and opposite woods. Their distribution from the phloem to the xylem was evaluated by high-performance liquid chromatography (HPLC) using serial tangential sections.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China.
Natural lignocellulose-based materials have numerous strengths such as abundance, cheap price and biodegradability, which indicates a brilliant prospect for environmental protection. This work aimed to design an efficient sorbent (NaSS-PSD) by pine sawdust (PSD) for the surveillance and management of enrofloxacin (ENR). In the study, sodium styrenesulfonate (NaSS) was chosen as an effective monomer to ameliorate the performance of PSD by graft copolymerization.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!