The regulation of gene expression via the histone code has, for the most part, revealed that histone modifications cause the recruitment of adaptor proteins that indirectly regulate the synthesis of RNA. Using purified factors to assemble and modify the chromatin and to transcribe the DNA, we investigated whether modifications of histones may directly impact the RNA polymerase II transcription process. We screened proteins known to modify histones for effects on transcription, and we found that the mitogen- and stress-induced kinase, MSK1, inhibited RNA synthesis. Inhibition of transcription by MSK1 was most sensitive when the template was in chromatin, as naked DNA templates were resistant to the effects of MSK1. We found that MSK1 phosphorylated histone H2A on serine 1, and mutation of serine 1 to alanine blocked the inhibition of transcription by MSK1. Furthermore, we found that acetylation of histone H3 by the p300 and CREB-binding protein associated factor, PCAF, suppressed the kinase-dependent inhibition of transcription. These results suggest that acetylation of histones may stimulate transcription by suppressing an inhibitory phosphorylation by a kinase as MSK1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M400099200 | DOI Listing |
Cell Biosci
January 2025
Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
Background: Myelin-laden foamy macrophages accumulate extensively in the lesion epicenter, exhibiting characteristics of autophagolysosomal dysfunction, which leads to prolonged inflammatory responses after spinal cord injury (SCI). Trehalose, known for its neuroprotective properties as an autophagy inducer, has yet to be fully explored for its potential to mitigate foamy macrophage formation and exert therapeutic effects in the context of SCI.
Results: We observed that trehalose significantly enhances macrophage phagocytosis and clearance of myelin in a dose-dependent manner in vitro.
J Exp Clin Cancer Res
January 2025
Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.
Methods: This study included 107 CRC patients.
BMC Genomics
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Pathology, Qilu Hospital and School of Basic Medical Sciences Shandong University, Jinan, Shandong, PR China.
Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS).
View Article and Find Full Text PDFAMB Express
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
Candida albicans is a commensal fungus that naturally inhabits the vagina. However, overgrowth of C. albicans can result in vulvovaginal candidiasis (VVC), one of the most prevalent fungal infections affecting women.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!