[Preliminary study on in vitro tendon engineering using tenocytes and polyglycolic acids].

Zhonghua Wai Ke Za Zhi

Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Second Medical University, Shanghai 200011, China.

Published: January 2004

Objective: To find out the feasibility of tendon engineering in vitro using expanded tenocytes and polyglycolic acids (PGA).

Methods: Tenocytes were isolated using tissue explant method and expanded in vitro. Tenocytes (20 x 10(6)) at the second passage were collected and then seeded onto PGA unwoven fibers to form a cell-scaffold construct in a shape of tendon. The constructs were cultured in DMEM with 20% FBS for 1 week. The cell-scaffold constructs were then cultured under constant tension generated by a U-shaped spring (n = 5), which served as experimental group, or cultured without tension (n = 4), which served as control group 1. PGA fibers alone were cultured (n = 3), which served as control group 2. Small fragments at the end of the constructs were harvested at 2, 4 and 6 weeks respectively for histological and immunohistochemistry (IHC) analysis. Six-week samples were also evaluated by transmission electron microscope (TEM) and mechanical test.

Results: No obvious difference was observed among the three groups at 2 weeks grossly and histologically as the constructs remained to be mainly undegraded PGA fibers. By 4 weeks, a neo-tendon was formed in the experimental group and control group 1 grossly, and histology and IHC revealed the formation of collagen fibers. In contrast, PGA fibers alone in control group 2 were mostly degraded. At 6 weeks, tendons of control group 1 were much thicker [(2.55 +/- 0.18) mm in diameter] than those of experimental group [(1.44 +/- 0.13) mm in diameter]. Periodical striae were observed in collagen fibers of experimental group and control group 1 by TEM. However, histology of tendons in experimental group revealed longitudinally aliened collagen fibers, which resembled the structure of normal tendon more closely than that of control group 1 tendons. Furthermore, the maximum tensile stress (N/mm(2)) of experimental group (1.107 +/- 0.327) was greater than that of control group 1 (0.294 +/- 0.138) (P < 0.05).

Conclusion: It is possible to use an engineering to construct tendon tissue in vitro. Periodical strain generated by bioreactor may be the optimal mechanical stimulation, which is currently under investigation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

control group
32
experimental group
24
group
14
pga fibers
12
collagen fibers
12
tendon engineering
8
tenocytes polyglycolic
8
constructs cultured
8
control
8
served control
8

Similar Publications

Encapsulation of Beauveria bassiana conidia as a new strategy for the biological control of Aedes aegypti larvae.

Sci Rep

December 2024

Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil.

The virulence of encapsulated fungal conidia against Aedes aegypti larvae was investigated. Molecular studies confirmed that the fungal isolate used here was Beauveria bassiana. Different conidial concentrations were tested.

View Article and Find Full Text PDF

The European pond turtle (Emys orbicularis) is a wide-ranging, long-living freshwater species with low reproductive success, mainly due to high predation pressure. We studied how habitat variables and predator communities in near-natural marshes affect the survival of turtle eggs and hatchlings. We followed the survival of artificial turtle nests placed in marshes along Lake Balaton (Hungary) in May and June as well as hatchlings (dummies) exposed in September.

View Article and Find Full Text PDF

The aim of this experiment was to investigate the effects of rumen fluid and molasses on the nutrient composition, fermentation quality, and microflora of Caragana korshinskii Kom. The trial included four treatments: a control group (CK) without additives and experimental groups supplemented with 7% rumen fluid (R), 4% molasses (M), and 7% rumen fluid + 4% molasses (RM). 15 days and 60 days of ensiling.

View Article and Find Full Text PDF

While numerous studies have established correlations between parasite load and negative effects on their hosts, establishing causality is more challenging because parasites can directly compromise host condition and survival or simply opportunistically thrive on an already weakened host. Here, we evaluated whether Ixodes uriae, a widespread seabird tick, can cause a decrease in growth parameters (body mass, bill length and growth rates) and survival of chicks of a colonially seabird, the black-browed albatross (Thalassarche melanophris) breeding on New Island (West Falkland). To investigate this, we daily removed the ticks from 28 randomly selected chicks during their first 14 days of life (treated chicks) and compared their growth and survival with 49 chicks of a control group.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!