Microarray analysis of developmental plasticity in monkey primary visual cortex.

J Neurochem

Department of Psychology, McGill University, Montréal, Québec, Canada.

Published: March 2004

We performed microarray gene expression analyses on the visual cortex of Old-World monkeys (Cercopithicus aethiops) in an effort to identify transcripts associated with developmental maturation and activity-driven changes during the visual critical period. Samples derived from normal animals and those subjected to monocular enucleation (ME) were hybridized to human Affymetrix HG-U95Av2 oligonucleotide microarrays (N = 12) and the results were independently validated by real-time quantitative RT-PCR. To identify genes exhibiting significant expression differences among our samples, the microarray hybridization data were processed with two software packages that use different analytical models (Affymetrix MicroArray Suite 5.0, dChip 1.2). We identified 108 transcripts within diverse functional categories that differed in their visual cortical expression at the height of the critical period when compared to adults. The expression levels of four transcripts were also globally modulated following ME during the critical period. These transcripts are particularly sensitive to ME during the critical period but are not significantly modulated in ME adults. Three of the ME-driven genes (NGFI-B, egr3, NARP) are known immediate-early genes (IEG) while the other (DUSP6) is a phosphatase that can regulate IEG expression. The putative biological significance of the ME-driven and developmentally regulated genes is discussed with respect to the critical period for activity-dependent visual cortical neuroplasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1471-4159.2003.02274.xDOI Listing

Publication Analysis

Top Keywords

critical period
20
visual cortex
8
visual cortical
8
visual
5
expression
5
critical
5
period
5
microarray
4
microarray analysis
4
analysis developmental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!