The deacetylase inhibitor trichostatin A (TSA) has long been used to study the relationship between gene transcription and the acetylation status of chromatin. We have used Xenopus laevis oocytes to study the effects of TSA on glucocorticoid receptor (GR)-dependent transcription and we have related these effects to changes in the chromatin structure of a reporter mouse mammary tumor virus (MMTV) promoter. We show that TSA induces a low level of constitutive transcription. This correlates with a change of acetylation pattern and a more open chromatin structure over the MMTV chromatin, and with specific acetylation and remodeling events in the promoter region. Specifically, a repositioning of initially randomly positioned nucleosomes along the distal MMTV long terminal repeat is seen. This nucleosome rearrangement is similar to the translational nucleosome positioning that occurs upon hormone activation. We also note a reduced hormone response in the presence of TSA. TSA effects have for a long time been associated with transcriptional activation and chromatin opening through inhibition of the deacetylation of histones. However, our results and those of others show that TSA-induced changes in expression and chromatin structure can be quite different in different promoter contexts and, thus, the effects of TSA are more complex than previously believed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.2004.04019.x | DOI Listing |
J Cell Sci
January 2025
Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, USA.
Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.
View Article and Find Full Text PDFTrends Genet
January 2025
Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China. Electronic address:
Neuronal activity, including sensory-evoked and spontaneous firing, regulates the expression of a subset of genes known as activity-dependent genes. A key issue in this process is the activation and accumulation of transcription factors (TFs), which bind to cis-elements at specific enhancers and promoters, ultimately driving RNA synthesis through transcription machinery. Epigenetic factors such as histone modifiers also play a crucial role in facilitating the specific binding of TFs.
View Article and Find Full Text PDFCancer Genet
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Marion, USA. Electronic address:
DNA double strand breaks (DSBs) can be generated spontaneously during DNA replication and are repaired primarily by Homologous Recombination (HR). However, efficient repair requires chromatin remodeling to allow the recombination machinery access to the break. TIP60 is a complex conserved from yeast to humans that is required for histone acetylation and modulation of HR activity at DSBs.
View Article and Find Full Text PDFCurr Opin Pharmacol
January 2025
Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark. Electronic address:
Chromatin dynamics, involving reversible changes in chromatin structure, shape key cellular processes and genomic integrity during development and proliferation, with disruptions leading to cancer. Histones, core components of chromatin and substrates for chromatin-modifying enzymes, play crucial roles in oncogenesis when misregulated or mutated. This is particularly pronounced in pediatric hind brain cancers, some of which are driven primarily by the oncohistone H3K27M and the recently identified oncohistone-mimic protein CXorf67/EZHIP.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
In eukaryotes, DNA achieves a highly compact structure primarily due to its winding around the histone cores. The nature wrapping of DNA around histone core form a 1.7 left-handed superhelical turns, contributing to negative supercoiling in chromatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!