Adaptive-optics performance of Antarctic telescopes.

Appl Opt

School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia.

Published: February 2004

The performance of natural guide star adaptive-optics systems for telescopes located on the Antarctic plateau is evaluated and compared with adaptive-optics systems operated with the characteristic mid-latitude atmosphere found at Mauna Kea. A 2-m telescope with tip-tilt correction and an 8-m telescope equipped with a high-order adaptive-optics system are considered. Because of the large isoplanatic angle of the South Pole atmosphere, the anisoplanatic error associated with an adaptive-optics correction is negligible, and the achievable resolution is determined only by the fitting error associated with the number of corrected wave-front modes, which depends on the number of actuators on the deformable mirror. The usable field of view of an adaptive-optics equipped Antarctic telescope is thus orders of magnitude larger than for a similar telescope located at a mid-latitude site; this large field of view obviates the necessity for multiconjugate adaptive-optics systems that use multiple laser guide stars. These results, combined with the low infrared sky backgrounds, indicate that the Antarctic plateau is the best site on Earth at which to perform high-resolution imaging with large telescopes, either over large fields of view or with appreciable sky coverage. Preliminary site-testing results obtained recently from the Dome Concordia station indicate that this site is far superior to even the South Pole.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.43.001435DOI Listing

Publication Analysis

Top Keywords

adaptive-optics systems
12
antarctic plateau
8
south pole
8
error associated
8
field view
8
adaptive-optics
7
adaptive-optics performance
4
antarctic
4
performance antarctic
4
antarctic telescopes
4

Similar Publications

As the demand for high-speed, low-latency communication continues to grow, free-space optical (FSO) communication has gained prominence as a promising solution for supporting the next generation of wireless networks, especially in the context of the 5G and beyond era. It offers high-speed, low-latency data transmission over long distances without the need for a physical infrastructure. However, the deployment of FSO systems faces significant challenges, such as atmospheric turbulence, weather-induced signal degradation, and alignment issues, all of which can impair performance.

View Article and Find Full Text PDF

Deep learning-based aberration compensation improves contrast and resolution in fluorescence microscopy.

Nat Commun

January 2025

Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.

Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast, and resolution. Here we introduce a deep learning-based strategy for aberration compensation, improving image quality without slowing image acquisition, applying additional dose, or introducing more optics. Our method (i) introduces synthetic aberrations to images acquired on the shallow side of image stacks, making them resemble those acquired deeper into the volume and (ii) trains neural networks to reverse the effect of these aberrations.

View Article and Find Full Text PDF

We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface.

View Article and Find Full Text PDF

Adaptive optics (AO) is a powerful method for correcting dynamic aberrations in numerous applications. When applied to the eye, it enables cellular-resolution retinal imaging and enhanced visual performance and stimulation. Most ophthalmic AO systems correct dynamic aberrations up to 1-2 Hz, the commonly-known cutoff frequency for correcting ocular aberrations.

View Article and Find Full Text PDF

A photonic lantern is a low-loss device that connects a single multimode waveguide to multiple single-mode waveguides and can enhance the beam quality of a fiber laser by adaptively controlling the optical parameters (amplitude, phase, polarization) at the input. In this work, we combined the gains and losses of individual modes within the fiber amplifier and introduced a mode content parameter at the amplifier's output as an evaluation function to simulate mode control effects. Mode competition within the gain fiber can degrade the control effect of the fundamental mode and lead to it taking a longer time for the control to converge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!