Strain C.B17 scid/scid (SCID) mice, which lack functional T and B lymphocytes, show heightened susceptibility to the induction of thymic lymphomas by x-irradiation. Susceptibility is highest in thymus-chimeric SCID-BL mice (thymectomized SCID mice bearing a C57BL thymus graft). All SCID-BL lymphomas originate in the cells of the thymic graft (C57BL type) and lack murine leukemia virus expression. Both SCID and SCID-BL lymphomas are phenotypically CD4-8+ and/or CD4+8+, but only the SCID-BL tumors express CD3. Injection of C57BL or BALB/c bone marrow into irradiated SCID-BL mice prevents lymphoma development, but SCID marrow is completely ineffective. The results suggest that the scid condition enhances the activity of a putative lymphomagenic agent induced in the bone marrow by x-irradiation and that C57BL thymic cells are highly sensitive targets. Moreover, the failure of SCID bone marrow to protect against lymphomagenesis vs. the efficacy of marrow from immunocompetent donors points to involvement of T or B lineage cells in this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119309PMC
http://dx.doi.org/10.1084/jem.176.2.399DOI Listing

Publication Analysis

Top Keywords

bone marrow
12
scid mice
8
scid-bl mice
8
scid-bl lymphomas
8
scid
6
scid-bl
5
marrow
5
unexpected effects
4
effects severe
4
severe combined
4

Similar Publications

Background: The efficacy of bone marrow aspirate concentrate (BMAC) in promoting bone-tendon interface (BTI) healing without any carriers remains a subject of debate.

Purpose: To evaluate BMAC effects with different carriers on tendon regeneration in a rabbit model of chronic rotator cuff tear.

Study Design: Controlled laboratory study.

View Article and Find Full Text PDF

Introduction: Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited.

View Article and Find Full Text PDF

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Background: Hematopoietic stem cell transplantation (HSCT) is a common therapy for many hematologic malignancies. While advances in transplant practice have improved cancer-specific outcomes, multiple and debilitating long term physical and psychologic effects remain. Patients undergoing allogeneic bone marrow transplantation (allo-BMT) are often critically ill at initial diagnosis and with necessary sequential treatments become increasingly frail and deconditioned.

View Article and Find Full Text PDF

Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!