ESR study of spin-trapping with two glycosylated analogues of PBN able to target cell membrane lectins.

Org Biomol Chem

UMR 6517, CNRS et Universités d'Aix-Marseille I et III, Laboratoire de Synthèse et Réactivité des Espèces Paramagnétiques, case 521, 13397 Marseille Cedex 20, France.

Published: March 2004

The spin trapping behaviour of the two galactosylated nitrones LAMPBN and TA1PBN, both of which are able to target cells through recognition by cell membrane lectins, were widely investigated on a variety of free radicals in aqueous media. The ESR spectra of the more amphiphilic nitrone, TA1PBN, were interpreted in the light of the LAMPBN trapping results. The spin adducts of nitrone TA1PBN, which may be better distributed inside the cell, were surrounded by two distinct environments due to the tensioactive organisation of the trap and gave two different ESR signals for each radical trapped.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b314706aDOI Listing

Publication Analysis

Top Keywords

cell membrane
8
membrane lectins
8
nitrone ta1pbn
8
esr study
4
study spin-trapping
4
spin-trapping glycosylated
4
glycosylated analogues
4
analogues pbn
4
pbn target
4
target cell
4

Similar Publications

The anatomical, histological, and histochemical characteristics of the foregut (FG), midgut (MG), and hindgut (HG), as well as their alterations during the ovarian cycle in female prawns, Macrobrachium rosenbergii, were investigated. The esophagus (ESO), cardia (CD), and pylorus (PY) are the main components of the FG. An epithelium (Ep) with thick cuticle (Cu) layers lining the ESO, and the ESO is encircled by the ESO glands.

View Article and Find Full Text PDF

The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria.

Cell Mol Life Sci

January 2025

State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.

Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.

View Article and Find Full Text PDF

TREM2 affects DAM-like cell transformation in the acute phase of TBI in mice by regulating microglial glycolysis.

J Neuroinflammation

January 2025

Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Background: Traumatic brain injury (TBI) is characterized by high mortality and disability rates. Disease-associated microglia (DAM) are a newly discovered subtype of microglia. However, their presence and function in the acute phase of TBI remain unclear.

View Article and Find Full Text PDF

Deapioplatycodin D (DPD) is a triterpenoid saponin natural compound isolated from the Chinese herb Platycodon grandiflorum that has antiviral and antitumor properties. This study aimed to investigate the effects of DPD on glioblastoma (GBM) cells and to determine its intrinsic mechanism of action. Using a CCK8 assay, it was found that DPD significantly inhibited the growth of GBM cells.

View Article and Find Full Text PDF

Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.

Cell Commun Signal

January 2025

Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.

Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!