Background: We have previously validated the use of micro-positron emission tomography (microPET) for monitoring the expression of a single PET reporter gene in rat myocardium. We now report the use of a bicistronic adenoviral vector (Ad-CMV-D2R80a-IRES-HSV1-sr39tk) for linking the expression of 2 PET reporter genes, a mutant rat dopamine type 2 receptor (D2R80a) and a mutant herpes simplex virus type 1 thymidine kinase (HSV1-sr39tk), with the aid of an internal ribosomal entry site (IRES).

Methods And Results: Rat H9c2 cardiomyoblasts transduced with increasing titers of Ad-CMV-D2R80a-IRES-HSV1-sr39tk (0 to 2.5x10(8) pfu) were assayed 48 hours later for reporter protein activities, which were found to correlate well with viral titer (r2=0.96, P<0.001 for D2R80A; r2=0.98, P<0.001 for HSV1-sr39TK) and each other (r2=0.97; P<0.001). Experimental (n=8) and control (n=6) athymic rats underwent intramyocardial injection of up to 2x10(9) pfu of Ad-CMV-D2R80a-IRES-HSV1-sr39tk and saline, respectively. Forty-eight hours later and weekly thereafter, rats were assessed for D2R80a-dependent myocardial accumulation of 3-(2-[18F]fluoroethyl)spiperone ([18F]-FESP) and HSV1-sr39tk-dependent sequestration of 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine ([18F]-FHBG) using microPET. Longitudinal [18F]-FESP and [18F]-FHBG imaging of experimental rats revealed a good correlation between the cardiac expressions of the 2 PET reporter genes (r2=0.73; P<0.001). The location of adenovirus-mediated transgene expression, as inferred from microPET images, was confirmed by ex vivo gamma counting of explanted heart.

Conclusions: The IRES-based bicistronic adenoviral vector can potentially be used in conjunction with PET for indirect imaging of therapeutic gene expression by replacing 1 of the 2 PET reporter genes with a therapeutic gene of choice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154818PMC
http://dx.doi.org/10.1161/01.CIR.0000121727.59564.5BDOI Listing

Publication Analysis

Top Keywords

micro-positron emission
8
emission tomography
8
bicistronic adenoviral
8
pet reporter
8
tomography imaging
4
imaging cardiac
4
cardiac gene
4
gene expression
4
expression rats
4
rats bicistronic
4

Similar Publications

Liposomal nanocarriers are able to carry peptides for efficient and selective delivery of radioactive tracer and drugs into the tumors. Angiopoietin 2 (ANGPT2) is an excellent biomarker for precise diagnosis and therapy of glioma. The present study aimed to design ANGPT2-specific peptides to modify the surface of nanoliposomes containing doxorubicin (Dox) for integrative imaging and targeting therapy of glioma.

View Article and Find Full Text PDF

Trimethyltin chloride (TMT), an organotin compound with potent neurotoxicity, is widely used as a heat stabilizer for plastics. However, the precise pathogenic mechanism of TMT remains incompletely elucidated, and there persists a dearth of sensitive detection methodologies for early diagnosis of TMT. In this study, Sprague-Dawley rats were treated with 10 mg/kg TMT to simulate acute exposure in humans.

View Article and Find Full Text PDF

The etiology and pathogenesis of Alzheimer's disease (AD) are complex, and currently, no comprehensive treatment measures exist. In this study, we initially utilized ultra-high-performance liquid chromatography with quadrupole orbitrap mass spectrometry (UHPLC-QE-MS) to profile the bioactive constituents of SZLOL present in the bloodstream. Subsequent Y-maze experimental data demonstrated that SZLOL could ameliorate short-term memory deficits in APP/PS1 mice.

View Article and Find Full Text PDF
Article Synopsis
  • Immunotherapies are effective for immune-related diseases like cancer, but patient responses vary, making personalization of treatments essential.
  • A novel nanobody-based immunotracer targeting CD163 was developed, which specifically binds to CD163 on macrophages without activating unwanted immune responses.
  • This tracer enables noninvasive imaging that distinguishes immunotherapy responders from nonresponders by visualizing differences in CD163 macrophage distribution in tumors, aiding in predicting and monitoring treatment success.
View Article and Find Full Text PDF

Novel Quantification Protocol for Cardiovascular Calcification Progression Using Longitudinal MicroPET/MicroCT Images.

J Vis Exp

November 2024

Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles; Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles; Jonsson Comprehensive Cancer Center, University of California, Los Angeles;

Micro positron emission tomography (PET) and micro computed tomography (CT) imaging are powerful, ideal research tools for following the progression of cardiovascular calcification. Due to their non-invasive nature, small research animals can be imaged at multiple time points. The challenge lies in the accurate quantification of cardiovascular calcification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!