Detection of Escherichia coli serogroups O26 and O113 by PCR amplification of the wzx and wzy genes.

Appl Environ Microbiol

Gastroenteric Disease Center, Department of Veterinary Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Published: March 2004

PCR-based assays for detecting enterohemorrhagic Escherichia coli serogroups O26 and O113 were developed by targeting the wzx (O-antigen flippase) and the wzy (O-antigen polymerase) genes found in the O-antigen gene cluster of each organism. The PCR assays were specific for the respective serogroups, as there was no amplification of DNA from non-O26 and non-O113 E. coli serogroups or from other bacterial genera tested. Using the PCR assays, we were able to detect the organisms in seeded apple juice inoculated at concentration levels as low as < or =10 CFU/ml. The O26- and O113-specific PCR assays can potentially be used for typing E. coli O26 and O113 serogroups; these assays will offer an advantage to food and environmental microbiology laboratories in terms of identifying these non-O157 serogroups by replacing antigen-based serotyping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC368303PMC
http://dx.doi.org/10.1128/AEM.70.3.1830-1832.2004DOI Listing

Publication Analysis

Top Keywords

coli serogroups
12
o26 o113
12
pcr assays
12
escherichia coli
8
serogroups o26
8
serogroups
6
assays
5
detection escherichia
4
coli
4
pcr
4

Similar Publications

Epidemiology of Shiga toxin-producing other than serotype O157:H7 in England, 2016-2023.

J Med Microbiol

January 2025

Field Service - South East and London, UK Health Security Agency, London, UK.

Shiga toxin-producing (STEC) infections are of public health concern as STEC can cause large national foodborne outbreaks of severe gastrointestinal disease, particularly in the young and elderly. In recent years, the implementation of PCR by diagnostic microbiology laboratories has improved the detection of STEC, and there has been an increase in notifications of cases of non-O157 STEC. However, the extent this increase in caseload can be attributed to the improved detection by PCR, or a true increase in non-O157 STEC infections, is unknown.

View Article and Find Full Text PDF

This investigation aimed to examine the virulence genes and antimicrobial resistance profiles of Shiga toxin-producing (STEC) strains found in diarrheal calves in Xinjiang between 2016 and 2022. A total of 800 samples, including 232 fecal and 568 rectal swabs from calves under 2 months old with diarrhea, were analyzed for Shiga toxin (Stx)-encoding genes using polymerase chain reaction. The study characterized the isolates based on their subtypes, virulence genes, O serogroups, phylogenetic groups, hemolytic phenotypes, antibiotic resistance, and resistance genes.

View Article and Find Full Text PDF
Article Synopsis
  • The human gut normally hosts beneficial bacteria that are essential for health, but some strains can lead to diseases, such as impairing gut function.
  • Certain strains of bacteria, particularly those in the B2 serogroup, produce colibactin through the pks gene cluster, which has unclear mechanisms and roles in gut toxicity.
  • This review examines how colibactin damages host DNA and its potential link to colorectal cancer development, emphasizing specific mutational processes that may aid in drug discovery and development.
View Article and Find Full Text PDF

Shiga toxin-producing (STEC) refers to a group of bacteria that can cause infections, which are common worldwide and pose a serious public health problem, as they can lead to conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). HUS is a disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Determination of serogroups and toxin profiles of STEC is important for estimating their disease-causing potential and predicting epidemiological changes.

View Article and Find Full Text PDF

We investigated the effect of propolis as a sanitiser on hatched eggs previously infected with avian Pathogenic Escherichia coli (E. coli) (APEC) serogroup O78. A green propolis watery extract at 24% and a native breed hatching eggs have been used in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!