Bacterial succession in a petroleum land treatment unit.

Appl Environ Microbiol

Environmental Biotechnology Institute, California Polytechnic State University, San Luis Obispo, California 93407, USA.

Published: March 2004

Bacterial community dynamics were investigated in a land treatment unit (LTU) established at a site contaminated with highly weathered petroleum hydrocarbons in the C(10) to C(32) range. The treatment plot, 3,000 cubic yards of soil, was supplemented with nutrients and monitored weekly for total petroleum hydrocarbons (TPH), soil water content, nutrient levels, and aerobic heterotrophic bacterial counts. Weekly soil samples were analyzed with 16S rRNA gene terminal restriction fragment (TRF) analysis to monitor bacterial community structure and dynamics during bioremediation. TPH degradation was rapid during the first 3 weeks and slowed for the remainder of the 24-week project. A sharp increase in plate counts was reported during the first 3 weeks, indicating an increase in biomass associated with petroleum degradation. Principal components analysis of TRF patterns revealed a series of sample clusters describing bacterial succession during the study. The largest shifts in bacterial community structure began as the TPH degradation rate slowed and the bacterial cell counts decreased. For the purpose of analyzing bacterial dynamics, phylotypes were generated by associating TRFs from three enzyme digests with 16S rRNA gene clones. Two phylotypes associated with Flavobacterium and Pseudomonas were dominant in TRF patterns from samples during rapid TPH degradation. After the TPH degradation rate slowed, four other phylotypes gained dominance in the community while Flavobacterium and Pseudomonas phylotypes decreased in abundance. These data suggest that specific phylotypes of bacteria were associated with the different phases of petroleum degradation in the LTU.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC368334PMC
http://dx.doi.org/10.1128/AEM.70.3.1777-1786.2004DOI Listing

Publication Analysis

Top Keywords

tph degradation
16
bacterial community
12
bacterial
8
bacterial succession
8
land treatment
8
treatment unit
8
petroleum hydrocarbons
8
16s rrna
8
rrna gene
8
community structure
8

Similar Publications

Olanzapine exposure disordered lipid metabolism, gut microbiota and behavior in zebrafish (Danio rerio).

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China. Electronic address:

Olanzapine (OLZ) is widely used in the treatment of schizophrenia, and its metabolic side effects have garnered significant attention in recent years. Despite this, the specific side effects of OLZ and the underlying mechanisms remain inadequately understood. To address this gap, zebrafish (Danio rerio) were exposed to OLZ at concentrations of 35.

View Article and Find Full Text PDF

Exploring Novel Fungal-Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation.

Toxics

December 2024

Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil.

Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified.

View Article and Find Full Text PDF

Programming a bacterial biosensor for directed evolution of tryptophan hydroxylase via high-throughput droplet sorting.

Biosens Bioelectron

March 2025

Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China. Electronic address:

The modification of tryptophan hydroxylase (TPH) for the biosynthesis of 5-hydroxytryptophan (5-HTP) has recently become a focus of research. In this study, we established a droplet-based ultrahigh-throughput microfluidic screening platform (DTSP) to improve the industrial properties of TPH, whereas a bacterial biosensor for L-tryptophan (L-Trp) detection was engineered to improve sensitivity. The promoter pJ23111 achieved a strong negative correlation between the L-Trp concentration and the fluorescence output of the biosensor.

View Article and Find Full Text PDF

Functional microbiome and phytoremediation enhance soil diesel degradation via enzyme activity.

J Environ Manage

January 2025

Carbon Neutral & Energy Research Center, National Kaohsiung University of Science and Technology, 1, University Rd., Yanchau, Kaohsiung, 811, Taiwan, ROC. Electronic address:

Article Synopsis
  • This study explores how combining a hydrogen-producing microbiome with phytoremediation improves the breakdown of diesel in contaminated soil, focusing on enhanced enzyme activity.
  • Key soil changes included increased moisture from 12.5% to 20%, a shift in pH to an alkaline level of 8.0-8.5, and improved organic matter, all supporting microbial activity.
  • The combined approach achieved a 78.1% reduction in total petroleum hydrocarbons, significantly outperforming traditional methods, while also boosting microbial populations and Bermuda grass survival rates.
View Article and Find Full Text PDF

Arsenic Enhances the Degradation of Middle-Chain Petroleum Hydrocarbons by sp. 2021 Under Their Combined Pollution.

Microorganisms

November 2024

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China.

The efficient and green remediation of petroleum hydrocarbon (PH) contamination has emerged as a viable strategy for environmental management. Here, we investigated the interaction between arsenic and PH degradation by sp. 2021 under their combined pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!