Astrocytic beta2-adrenergic receptors and multiple sclerosis.

Neurobiol Dis

Department of Neurology, University Hospital Groningen, Groningen, The Netherlands.

Published: March 2004

Despite intensive research, the cause and a cure of multiple sclerosis (MS) have remained elusive and many aspects of the pathogenesis are not understood. Immunohistochemical experiments have shown that astrocytic beta(2)-adrenergic receptors are lost in MS. Because norepinephrine mediates important supportive and protective actions of astrocytes via activation of these beta(2)-adrenergic receptors, we postulate that this abnormality may play a prominent role in the pathogenesis of MS. First, it may allow astrocytes to act as facultative antigen-presenting cells, thereby initiating T-cell mediated inflammatory responses that lead to the characteristic demyelinated lesions. Second, it may contribute to inflammatory injury by stimulating the production of nitric oxide and proinflammatory cytokines, and reducing glutamate uptake. Third, it may lead to apoptosis of oligodendrocytes by reducing the astrocytic production of trophic factors, including neuregulin, nerve growth factor and brain-derived neurotrophic factor. Fourth, it may impair astrocytic glycogenolysis, which supplies energy to axons, and this may represent a mechanism underlying axonal degeneration that is hold responsible for the progressive chronic disability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2003.10.012DOI Listing

Publication Analysis

Top Keywords

beta2-adrenergic receptors
12
astrocytic beta2-adrenergic
8
multiple sclerosis
8
astrocytic
4
receptors multiple
4
sclerosis despite
4
despite intensive
4
intensive cure
4
cure multiple
4
sclerosis remained
4

Similar Publications

Article Synopsis
  • The study investigates the effectiveness of immunoadsorption (IA) treatment on post-COVID myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients, focusing on those with elevated β2 adrenergic autoantibodies.
  • Patients underwent five IA sessions and showed significant improvement in physical functioning, fatigue, and other symptoms over six months, with 70% responding positively to the treatment.
  • The findings suggest that IA could be a beneficial therapy for alleviating symptoms in post-COVID ME/CFS patients, indicating a possible link between autoimmunity and the condition.
View Article and Find Full Text PDF

Background: Obstructive sleep apnea syndrome (OSAS) is a chronic syndrome, affecting about 1%-5% of children. OSAS is characterized by increased resistance and collapse of the upper airways, with different degrees of severity requiring interventions ranging from lifestyle modifications to surgery. Sympathetic activity is increased in OSAS, and the reduction of disease symptoms, occurring after adenotonsillectomy, correlates with biomarkers indicating a reduced sympathetic response.

View Article and Find Full Text PDF

Flavan-3-ols (FL) are poorly bioavailable astringent polyphenols that induce hyperactivation of the sympathetic nervous system. The aim of this study was to investigate the effects of repeated oral administration of FL on mice hindlimb skeletal muscle using immunohistochemical techniques. C57BL/6J male mice were orally administered 50 mg/kg of FL for a period of 2 weeks, and bromideoxyuridine (BrdU) was administered intraperitoneally 3 days prior to the dissection.

View Article and Find Full Text PDF

A small molecule enhances arrestin-3 binding to the β-adrenergic receptor.

bioRxiv

December 2024

Istanbul Medipol University, School of Engineering and Natural Sciences, Department of Biomedical Engineering, 34810, Istanbul, Turkey.

G protein-coupled receptor (GPCR) signaling is terminated by arrestin binding to a phosphorylated receptor. Binding propensity has been shown to be modulated by stabilizing the pre-activated state of arrestin through point mutations or C-tail truncation. Here, we hypothesize that pre-activated rotated states can be stabilized by small molecules, and this can promote binding to phosphorylation-deficient receptors, which underly a variety of human disorders.

View Article and Find Full Text PDF

Phenylacetylglycine (PAGly) is a small molecule derived from phenylalanine in the gut glycine degradation and conjugation. It has been associated with both the progression of atherosclerosis and protective effects on the myocardium. This study evaluated the function and the underlying mechanisms of PAGly in a rat cerebral ischemia/reperfusion (I/R) injury model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!