Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase is a key enzyme of the gluconeogenic pathway and catalyzes the decarboxylation of oxaloacetate and transfer of the gamma-phosphoryl group of ATP to yield PEP, ADP, and CO(2) in the presence of a divalent metal ion. Previous experiments have shown that mutation of amino acid residues at metal site 1 decrease the steady-state affinity of the enzyme for PEP, suggesting interaction of PEP with the metal ion [Biochemistry 41 (2002) 12763]. To more completely understand this enzyme interactions with substrate ligands, we have prepared the phosphopyridoxyl (P-pyridoxyl)-derivatives of wild type, Lys213Arg, and His233Gln S. cerevisiae PEP carboxykinase and used the changes in the fluorescence probe to determine the dissociation equilibrium constants of PEP, ATPMn(2-), and ADPMn(1-) from the corresponding derivatized enzyme-Mn(2+) complexes. Homology modeling of P-pyridoxyl-PEP carboxykinase and P-pyridoxyl-PEP carboxykinase-substrate complexes agree with experimental evidence indicating that the P-pyridoxyl group does not interfere with substrate binding. ATPMn(2-) binding is 0.8kcalmol(-1) more favorable than ADPMn(1-) binding to wild type P-pyridoxyl-enzyme. The thermodynamic data obtained in this work indicate that PEP binding is 2.3kcalmol(-1) and 3.2kcalmol(-1) less favorable for the Lys213Arg and His233Gln mutant P-pyridoxyl-PEP carboxykinases than for the wild type P-pyridoxyl-enzyme, respectively. The possible relevance of N and O ligands for Mn(2+) in relation to PEP binding and catalysis is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2003.09.008 | DOI Listing |
J Bone Miner Res
January 2025
Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.
We previously documented successful resolution of skeletal and dental disease in the infantile and late-onset murine models of hypophosphatasia (HPP), with a single injection of an adeno-associated serotype 8 vector encoding mineral-targeted TNAP (AAV8-TNAP-D10). Here, we conducted dosing studies in both HPP mouse models. A single escalating dose from 4x108 up to 4x1010 (vg/b) was intramuscularly injected into 4-day-old Alpl-/- mice (an infantile HPP model) and a single dose from 4x106 up to 4x109 (vg/b) was administered to 8-week-old AlplPrx1/Prx1 mice (a late-onset HPP model).
View Article and Find Full Text PDFMol Divers
January 2025
School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Department of Pathology and Laboratory Medicine; Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66160. Electronic address:
Background: A loss-of-functional mutation (W1183R) in human complement factor H (CFH) is associated with complement-associated hemolytic uremic syndrome; mice carrying a similar mutation (W1206R) in CFH also develop thrombotic microangiopathy but its plasma von Willebrand factor (VWF) multimer sizes were dramatically reduced. The mechanism underlying such a dramatic change in plasma VWF multimer distribution in these mice is not fully understood.
Objective And Methods: To determine the VWF and CFH interaction and how CFH proteins affect VWF multimer distribution, we employed recombinant protein expression, purification, and various biochemical and biophysical tools.
J Biol Chem
January 2025
Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798-7348, USA. Electronic address:
Coupling interactions between the alpha (α) subunit of the polymerase III core (α-Pol III core) and the tau (τ) subunit of the clamp loader complex (τ-CLC) are vital for efficient and rapid DNA replication in Escherichia coli (E. coli). Specific and targeted mutations in the C-terminal τ-interaction region of the Pol III α-subunit disrupted efficient coupled rolling circle DNA synthesis in vitro and caused significant genomic defects in CRISPR-Cas9 dnaE edited cell strains.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA. Electronic address:
Most adhesion GPCRs undergo autoproteolytic cleavage during receptor biosynthesis, resulting in non-covalently bound N- and C-terminal fragments (NTF and CTF) that remain associated during receptor trafficking to the plasma membrane. While substantial evidence supports increased G protein signaling when just the CTF is expressed, there is an ongoing debate about whether NTF removal is required to initiate signaling in the context of the wild-type receptor. Here, we use adhesion GPCR latrophilin-3 (ADGRL3) as a model receptor to investigate tethered agonist-mediated activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!