HSV-1 virions engineered for specific binding to cell surface receptors.

Mol Ther

Department of Neurology and Department of Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA.

Published: March 2004

Expression of specific peptide epitopes on the surface of virions has significant potential for studying viral biology and designing vectors for targeted gene therapy. In this study, an HSV-1 amplicon plasmid expressing a modified glycoprotein C (gC), in which the heparan sulfate binding domain was replaced with a His-tag, was used in generating HSV-1 virions. Western blot analysis demonstrated the presence of modified gC in the purified virions. The amplicon vectors were packaged using a gC-, lacZ+ helper virus to generate a mixture of high-titer helper virus (lacZ+) and amplicon vectors (GFP+), which expressed modified gC in the virion envelope. His-tagged virions bound to 293 6H cells expressing a cell surface pseudo-His-tag receptor four-fold more efficiently than to parental 293 cells and also proved more effective than wild-type virus in binding to both cell types. Binding resulted in productive infection by the modified virions with expression of reporter genes and cytopathic effect comparable to those of wild-type virions. Thus, not only can HSV-1 tropism be manipulated to recognize a non-herpes simplex binding receptor, but it is also possible to increase the infective capacity of the vectors beyond that of the wild-type virus via specific ligand receptor combinations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymthe.2003.12.010DOI Listing

Publication Analysis

Top Keywords

hsv-1 virions
8
binding cell
8
cell surface
8
amplicon vectors
8
helper virus
8
293 cells
8
wild-type virus
8
virions
6
binding
5
hsv-1
4

Similar Publications

In herpesvirus, the terminase subunit pUL15 is involved in cleavage of the viral genome concatemers in the nucleus. Previous studies have shown that herpes simplex virus 1 (HSV-1) pUL15 can enter the nucleus without other viral proteins and help other terminase subunits enter the nucleus. However, this study revealed that duck plague virus (DPV) pUL15 cannot localize independently to the nucleus and can only be localized in the nucleus in the presence of pUL28 and pUL33.

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers successfully created an infectious clone of HSV-1 by assembling its genome from 11 cloned fragments in yeast using a method called transformation associated recombination.* -
  • They engineered mutations in five specific genes, which are important for the virus's structure and functionality, and discovered that certain combinations of these mutations led to "synthetic lethality," preventing the virus from replicating in specific cell lines.* -
  • The study focused on the mutations of the UL16 and UL21 genes, revealing that viruses lacking both proteins showed immature capsid structures unable to mature into infectious particles, highlighting their potential roles in virus assembly.*
View Article and Find Full Text PDF

Cryptic phosphoribosylase activity of NAMPT restricts the virion incorporation of viral proteins.

Nat Metab

December 2024

Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.

As obligate intracellular pathogens, viruses activate host metabolic enzymes to supply intermediates that support progeny production. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of salvage nicotinamide adenine dinucleotide (NAD) synthesis, is an interferon-inducible protein that inhibits the replication of several RNA and DNA viruses through unknown mechanisms. Here, we show that NAMPT restricts herpes simplex virus type 1 (HSV-1) replication by impeding the virion incorporation of viral proteins owing to its phosphoribosyl-hydrolase (phosphoribosylase) activity, which is independent of the role of NAMPT in NAD synthesis.

View Article and Find Full Text PDF

HSV1-induced enhancement of productive HIV-1 replication is associated with interferon pathway downregulation in human macrophages.

Mem Inst Oswaldo Cruz

October 2024

Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil.

Background: Herpesviruses are common co-pathogens in individuals infected with human immunodeficiency virus (HIV). Herpes simplex virus type 1 (HSV1) enhances HIV-1 replication and has evolved mechanisms to evade or disrupt host innate immune responses, including interference with interferon (IFN) signalling pathways.

Objectives: The aimed of this work was evaluated whether it HSV1 affects HIV-1 replication through the modulation of the IFN pathway in human macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!