We modeled the inhibitory effects of transcranial magnetic stimulation (TMS) on a neural population. TMS is a noninvasive technique, with high temporal resolution, that can stimulate the brain via a brief magnetic pulse from a coil placed on the scalp. Because of these advantages, TMS is extensively used as a powerful tool in experimental studies of motor, perception, and other functions in humans. However, the mechanisms by which TMS interferes with neural activities, especially in terms of theoretical aspects, are totally unknown. In this study, we focused on the temporal properties of TMS-induced perceptual suppression, and we computationally analyzed the response of a simple network model of a sensory feature detector system to a TMS-like perturbation. The perturbation caused the mean activity to transiently increase and then decrease for a long period, accompanied by a loss in the degree of activity localization. When the afferent input consisted of a dual phase, with a strong transient component and a weak sustained component, there was a critical latency period of the perturbation during which the network activity was completely suppressed and converged to the resting state. The range of the suppressive period increased with decreasing afferent input intensity and reached more than 10 times the time constant of the neuron. These results agree well with typical experimental data for occipital TMS and support the conclusion that dynamical interaction in a neural population plays an important role in TMS-induced perceptual suppression.

Download full-text PDF

Source
http://dx.doi.org/10.1162/089976604322742047DOI Listing

Publication Analysis

Top Keywords

perceptual suppression
12
network model
8
transcranial magnetic
8
magnetic stimulation
8
neural population
8
tms-induced perceptual
8
afferent input
8
tms
5
model perceptual
4
suppression induced
4

Similar Publications

Overcoming the cognition-reality gap in robot-to-human handovers with anisotropic variable force guidance.

Comput Struct Biotechnol J

December 2024

The State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

Object handover is a fundamental task for collaborative robots, particularly service robots. In in-home assistance scenarios, individuals often face constraints due to their posture and declining physical functions, necessitating high demands on robots for flexible real-time control and intuitive interactions. During robot-to-human handovers, individuals are limited to making perceptual judgements based on the appearance of the object and the consistent behaviour of the robot.

View Article and Find Full Text PDF

In recent years, substantial strides have been made in the field of visual image reconstruction, particularly in its capacity to generate high-quality visual representations from human brain activity while considering semantic information. This advancement not only enables the recreation of visual content but also provides valuable insights into the intricate processes occurring within high-order functional brain regions, contributing to a deeper understanding of brain function. However, considering fusion semantics in reconstructing visual images from brain activity involves semantic-to-image guide reconstruction and may ignore underlying neural computational mechanisms, which does not represent true reconstruction from brain activity.

View Article and Find Full Text PDF

Policy complexity suppresses dopamine responses.

J Neurosci

January 2025

Department of Physiology, Anatomy and Genetics, University of Oxford.

Limits on information processing capacity impose limits on task performance. We show that male and female mice achieve performance on a perceptual decision task that is near-optimal given their capacity limits, as measured by policy complexity (the mutual information between states and actions). This behavioral profile could be achieved by reinforcement learning with a penalty on high complexity policies, realized through modulation of dopaminergic learning signals.

View Article and Find Full Text PDF

How does orientation-tuned normalization spread across the visual field?

J Neurophysiol

January 2025

Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215.

Visuocortical responses are regulated by gain control mechanisms, giving rise to fundamental neural and perceptual phenomena such as surround suppression. Suppression strength, determined by the composition and relative properties of stimuli, controls the strength of neural responses in early visual cortex, and in turn, the subjective salience of the visual stimulus. Notably, suppression strength is modulated by feature similarity; for instance, responses to a center-surround stimulus in which the components are collinear to each other are weaker than when they are orthogonal.

View Article and Find Full Text PDF

We extend existing techniques by using generative adversarial network (GAN) models to reduce the appearance of cast shadows in radiographs across various age groups. We retrospectively collected 11,500 adult and paediatric wrist radiographs, evenly divided between those with and without casts. The test subset consisted of 750 radiographs with cast and 750 without cast.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!