Coupling femtosecond light pulses from an all-fiber Er:laser system into a dispersion-shifted and highly non-linear fiber, we generate output spectra exhibiting two broadband and mutually coherent maxima. Depending on the chirp of the input pulse, the spectral separation is easily tunable over a wide range up to values exceeding 100 THz. In this way, the source provides access to an ultrabroadband wavelength interval from 1130 to 1950 nm. Because of soliton effects, the long-wave component exhibits a transform-limited pulse width of 40 fs directly after the nonlinear element. The high-frequency part propagating in the dispersive regime is recompressed to pulse durations as short as 24 fs with an optimized prism sequence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.29.000516 | DOI Listing |
Nano Lett
June 2015
4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
We perform second harmonic spectroscopy of aluminum nanoantenna arrays that exhibit plasmonic resonances at the second harmonic wavelength between 450 and 570 nm by focusing sub-30 fs laser pulses tunable from 900 to 1140 nm onto the nanoantenna arrays. We find that a plasmonic resonance at the second harmonic wavelength boosts the overall nonlinear process by more than an order of magnitude. In particular, in the measurement the resonant second harmonic polarization component is a factor of about 70 stronger when compared to the perpendicular off-resonant second harmonic polarization.
View Article and Find Full Text PDFOptical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.
View Article and Find Full Text PDFWe describe temporal compression of ultrabroadband, few microjoule mid-infrared (mid-IR) pulses from a noncollinear optical parametric amplifier (NOPA) employed in a sum-frequency generation (SFG) vibrational spectroscopic system, operating in total-internal-reflection geometry. The propagation of the mid-IR beam through optical materials results in a significant temporal chirp at the probed interface, which is analyzed and corrected by properly managing the total dispersion of materials introduced into the mid-IR beam path. By employing the simultaneous spatial and temporal focusing of the broadband infrared pulses at the probed interface, we achieve a sub-50-fs full width at half-maximum (FWHM) for the instrument response function, measured via SFG cross correlation of the ultrashort mid-IR pulses with an ultrashort (~30 fs) near-IR pulse from a synchronized, independently tunable NOPA.
View Article and Find Full Text PDFOpt Express
November 2012
Ultrafast Optics Laboratory, Faculty of Physics, Yerevan State University 1, Alex Manoogian Street, Yerevan 0025, Armenia.
We experimentally demonstrate a compact and efficient arrangement for fiber delivery of sub-30 fs energetic light pulses at 800 nm. Pulses coming from a broadband Ti:Sapphire oscillator are negatively pre-chirped by a grism-pair stretcher that allows for the control of second and third orders of dispersion. At the direct exit of a 2.
View Article and Find Full Text PDFOpt Lett
November 2012
4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, Stuttgart 70569, Germany.
We perform third-harmonic (TH) spectroscopy on rod-type gold nanoantenna arrays using widely tunable sub-30 fs laser pulses. We find the peak of the TH generation efficiency of the antenna arrays always slightly redshifted with respect to the peak of their linear extinction spectrum. We model the wavelength-dependent TH response quantitatively using a nonlinear harmonic oscillator model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!