Detection of Babesia microti by polymerase chain reaction.

J Clin Microbiol

Department of Laboratory Medicine and Pathology, Mayo Foundation, Rochester, Minnesota 55905.

Published: August 1992

Human babesiosis, which is caused by infection with the intraerythrocytic malarialike protozoan Babesia microti, has recently been diagnosed with increasing frequency in residents of New England. Diagnosis is difficult because of the small size of the parasite and the sparse parasitemia that is characteristic of most infections with this pathogen. We generated B. microti-specific DNA sequence information by universal primer amplification of a portion of the eukaryotic 16S-like gene; this was followed by direct DNA sequence analysis. Specific primers were synthesized on the basis of this sequence information for use in the polymerase chain reaction (PCR). The PCR-based system demonstrates a strong bias for detection of B. microti as opposed to Babesia gibsoni and does not amplify vertebrate DNA. The analytical sensitivity of the system is approximately three merozoites. Blood specimens from 12 patients with clinically diagnosed and parasitologically confirmed babesiosis from Nantucket Island, Mass., were PCR positive in a blinded test of this procedure. Thus, DNA amplification may provide an adjunct to conventional methods for the diagnosis of human babesiosis and may provide a new means of monitoring therapy or enhancing epidemiological surveillance for this emerging pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC265450PMC
http://dx.doi.org/10.1128/jcm.30.8.2097-2103.1992DOI Listing

Publication Analysis

Top Keywords

babesia microti
8
polymerase chain
8
chain reaction
8
human babesiosis
8
dna sequence
8
detection babesia
4
microti polymerase
4
reaction human
4
babesiosis caused
4
caused infection
4

Similar Publications

Proteomic Identification and Functional Analysis of Reveals Heparin-Binding Proteins.

J Trop Med

January 2025

National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Laboratory of Parasite and Vector Biology, Ministry of Public Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China.

Glycosaminoglycan (GAG) molecules on the surface of red blood cells play an important regulatory role in the invasion of merozoites of apicomplexan protozoa. Heparan sulfate, a type of GAG molecule, has been identified as an important receptor facilitating the invasion of red blood cells by these parasites. Proteins in the parasite that exhibit strong affinity for heparin may play a pivotal role in this invasion process.

View Article and Find Full Text PDF

With climate and land use changes, tick-borne pathogens are expected to become more widely distributed in Canada. Pathogen spread and transmission in this region is modulated by changes in the abundance and distribution of tick and host populations. Here, we assessed the relationships between pathogens detected in and mammal hosts at sites of different levels of disease risk using data from summer field surveys in Ontario and Quebec, Canada.

View Article and Find Full Text PDF

Development of Multiplex Assays for the Identification of Zoonotic Species.

Pathogens

December 2024

Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.

More than one-hundred species that affect animals and humans have been described, eight of which have been associated with emerging and underdiagnosed zoonoses. Most diagnostic studies in humans have used serology or molecular assays based on the 18S rRNA gene. Because the 18S rRNA gene is highly conserved, obtaining an accurate diagnosis at the species level is difficult, particularly when the amplified DNA fragment is small.

View Article and Find Full Text PDF

The Qinghai Lake National Nature Reserve (QLNNR), renowned for its abundant natural resources and diverse ecological habitats, serves as an ideal environment for ticks, thereby increasing the risk of various tick-borne pathogens (TBPs) transmission. This study aimed to investigate the prevalence of TBPs in ticks collected from Przewalski's gazelle and Tibetan sheep within the QLNNR. A total of 313 tick samples were collected from the vicinity of Qinghai Lake.

View Article and Find Full Text PDF

The vector competence of blood-feeding arthropods is influenced by the interaction between pathogens and the immune system of the vector. The Toll and IMD (immune deficiency) signaling pathways play a key role in the regulation of innate immunity in both the Drosophila model and blood-feeding insects. However, in ticks (chelicerates), immune determination for pathogen acquisition and transmission has not yet been fully explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!