A marine bacterium, Pseudomonas aeruginosa BYK-2 (KCTC 18012P), was immobilised by entrapment in 10% (w/v) polyvinyl alcohol beads and optimized for the continuous production of rhamnolipid. The relative activity of rhamnolipid production was maintained at 80 approximately 90% of the initial production during 15 cycles in a repeated batch culture. Continuous culture was performed in a 1.8 1 airlift bioreactor, yielding 0.1 g rhamnolipid h(-1) at a dilution rate of 0.0 18 h(-1), 25 degrees C, initial pH 7, and 0.5 vvm aeration rate with a 1.21 working volume.

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:bile.0000009457.42943.90DOI Listing

Publication Analysis

Top Keywords

rhamnolipid production
8
pseudomonas aeruginosa
8
polyvinyl alcohol
8
alcohol beads
8
rhamnolipid
4
production pseudomonas
4
aeruginosa immobilised
4
immobilised polyvinyl
4
beads marine
4
marine bacterium
4

Similar Publications

Rhamnolipid: nature-based solution for the removal of microplastics from the aquatic environment.

Integr Environ Assess Manag

January 2025

Engineering Faculty, Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye.

Over the past two decades, research into the accumulation of small plastic particles and fibers in organisms and environmental settings has yielded over 7,000 studies, highlighting the widespread presence of microplastics in ecosystems, wildlife, and human bodies. In recent years, these contaminants have posed a significant threat to human, animal, and environmental health, with most efforts concentrated on removing them from aquatic systems. Given this urgency, the purpose of this study was to investigate the potential of rhamnolipid, a biosurfactant, for the removal of microplastics from water.

View Article and Find Full Text PDF

Exploring the antivirulence potential of phenolic compounds to inhibit quorum sensing in Pseudomonas aeruginosa.

World J Microbiol Biotechnol

January 2025

Food Research Center (FoRC), Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.

Bacteria coordinate gene expression in a cell density-dependent manner in a communication process called quorum sensing (QS). The expression of virulence factors, biofilm formation and enzyme production are QS-regulated phenotypes that can interfere in human health. Due to this importance, there is great interest in inhibiting QS, comprising an anti-virulence strategy.

View Article and Find Full Text PDF

Biofilm formation and virulence factor production by Pseudomonas aeruginosa are identified as the main mechanisms of its antibiotic resistance and pathogenicity. In this context, the study of the chemical composition of three Algerian essential oils (EOs) and the screening of their antibacterial, antibiofilm, and virulence factor inhibitory activities enabled us to select the thyme EO as the best oil to control the P. aeruginosa strain isolated from hospital environments.

View Article and Find Full Text PDF

Comparative phenotypic and proteomic analysis of colistin-exposed .

Germs

September 2024

PhD, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam, and Research Center for Infectious Diseases, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.

Introduction: The emergence of colistin resistance threatens the treatment of infections.

Methods: In this study, in vitro development of colistin resistance was investigated using comparative phenotypic and proteomic analysis of ATCC 9027, its 14-day colistin sub-MIC exposed strain (Col-E1), and 10-day antibiotic-free cultured Col-E1 strain (Col-E2). Antibiotic susceptibility, morphology, virulence factors, and proteomic changes were assessed using disc-diffusion, agar-based, spectrophotometry, SEM, and iTRAQ-LC-MS/MS methods.

View Article and Find Full Text PDF

The application of biodegradable chelating agents in phytoremediation is a promising approach. This study aimed to investigate the effects and roles of underlying mechanisms of water-soluble carboxymethyl chitosan (WSCC) and rhamnolipids (RLs) on the remediation of Cd-contaminated soil by Hylotelephium spectabile. WSCC and RLs mediated the growth of H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!