Through binding with estrogen receptors, phytoestrogens, plant-derived estrogen-like compounds, affect numerous reproductive functions. It is not known whether these compounds are capable of evoking effective changes in luteinizing hormone (LH) and prolactin (PRL) secretion in ewes by acting directly within the central nervous system (CNS). The hypothesis studied was that genistein, infused for several hours into the third ventricle, could immediately affect LH and PRL secretion in ovariectomized (OVX) ewes during seasonal anestrus. Two doses of genistein, 1 microg/100 microl/h (total 4 microg, n = 7) and 10 microg/100 microl/h (total 40 microg, n = 7), were infused intracerebroventricularly from 12.00 to 16.00 h and blood samples were collected from 8.00 to 20.00 h at 10-min intervals. Randomly selected ewes were infused with a vehicle (control, n = 5). The mean plasma LH concentration in control ewes was significantly (p < 0.01) higher during infusion of the vehicle than before the infusion. It remained on an insignificantly changed level after the infusion. The frequency of LH pulses in control ewes did not differ significantly before, during, or after vehicle infusion. In ewes infused with a lower dose of genistein, plasma LH concentrations decreased significantly (p < 0.001) after the infusion, as compared with the values noted before and during genistein infusion. Only a tendency towards a decrease in LH pulse frequency occurred after infusion of a lower dose of genistein. In ewes infused with a higher dose of genistein, the plasma LH concentration decreased significantly (p < 0.01) after phytoestrogen administration as compared with the values noted before and during infusion. The frequency of LH pulses was also significantly (p < 0.01) lower after genistein administration. Because the changes in PRL secretion were more dynamic in response to genistein infusion, the statistical analysis included 2-hour periods. The mean plasma PRL concentration in control animals was significantly enhanced (p < 0.01) only during the first 2-hour period of sampling. After that it decreased and remained on an unchanged level up to the end of sampling. Similar changes in PRL secretion were observed in both experimental groups before genistein infusion. In contrast, significant (p < 0.01 to p < 0.001) increases in PRL concentration were noted regularly during and shortly after the genistein infusion in either low-dose or high-dose genistein-infused ewes, compared with the concentrations noted before genistein treatment. Plasma PRL concentrations during and after genistein infusion in both experimental groups were also significantly higher than the control (p < 0.01 to p < 0.001). The presented data demonstrate that genistein, a phytoestrogen, may effectively modulate LH and PRL secretion in OVX ewes by acting within the CNS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000076630 | DOI Listing |
Cells
January 2025
Unidad de Investigación Médica en Inmunología, de la UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.
Type 1 diabetes (T1D) is a complex disease driven by the immune system attacking the insulin-producing beta cells in the pancreas. Understanding the role of different T cell subpopulations in the development and progression of T1D is crucial. By employing flow cytometry to compare the characteristics of T cells, we can pinpoint potential indicators of treatment response or therapeutic inefficacy.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
At present, the problem of drug addiction treatment mainly lies in the high relapse rate of drug addicts. Addictive drugs will bring users a strong sense of euphoria and promote drug seeking. Once the drug is withdrawn, there will be withdrawal symptoms such as strong negative emotions and uncomfortable physical reactions.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
A similar secretory pattern of prolactin (PRL) and growth hormone (GH) during the menstrual cycle has been reported in response to a high dose of ghrelin in adult healthy women. The present study aimed to assess the pattern of PRL and GH secretions in response to a submaximal dose of ghrelin during different menstrual phases in adult healthy women. Eight female subjects with normal cyclicity were enrolled.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.
The placenta is a unique organ with various immunological and endocrinological roles that modulate maternal and fetal physiology to promote maternal-fetal tolerance, pregnancy maintenance, and parturition at term. During pregnancy, the hormone prolactin (PRL) is constitutively secreted by the placenta and is necessary for implantation, progesterone support, fetal development, and overall immune modulation. While PRL is essential for pregnancy, studies suggest that elevated levels of serum PRL (hyperprolactinemia) are associated with adverse pregnancy outcomes, including miscarriage, preterm birth, and preeclampsia.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Department of Neurology with Institute of Translational Neurology, University Hospital 4 Münster, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!