In mammals, CpG methylation is one of the mechanisms of epigenetic control over the linear sequence of bases of deoxyribonucleic acid (DNA); about 70% of CpG dinucleotides are methylated. The actual signal that triggers DNA methylation is not known, although repetitive DNA has been shown to be an attractive template for DNA methylases. To address methylation events associated with transgenic copy number, we have analyzed transgenes that are actively transcribed in a tissue-specific manner. We have compared gross transgene methylation by restriction-enzyme digestion in expressing and nonexpressing tissues. The observed pattern suggests that the DNA methylation machinery can recognize repeated genomic sequences independently of their transcriptional activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/MB:26:3:215 | DOI Listing |
Plant Sci
December 2024
National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China. Electronic address:
Forward genetic screens have uncovered numerous genes involved in DNA methylation regulation, but these methods are often time-intensive, costly, and labor-intensive. To address these limitations, this study utilized CRISPR technology to knockout selected co-expressed genes, enabling the rapid identification of low luciferase (LUC) luminescence mutants in the Col-LUC line, which harbors a LUC transgene driven by a 2×35S promoter in Arabidopsis. As proof of concept, the repressor of silencing 1 (ROS1) and RNA-directed DNA methylation 1 (RDM1) genes were used as controls, while the increased DNA methylation 3 (IDM3) gene, co-expressed with ROS1, was selected as the target for gene knockout experiments.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China. Electronic address:
Sclerotinia sclerotiorum is a severe disease that affects rapeseed (Brassica napus), resulting in significant yield losses. In previous study, we identified the candidate GLUTATHIONE S-TRANSFERASE (GST) gene, BnGSTU12, associated with sclerotiorum stem resistance and the expression levels of BnGSTU12 in resistant lines were higher than that in susceptible lines. We analyzed the function of the BnGSTU12 during S.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China. Electronic address:
Xanthomonas fragariae (Xaf) is the cause of strawberry crown dry cavity rot and strawberry leaf angular spots. Despite having a long evolutionary history with strawberries, the plant-pathogen interaction is poorly understood. Pathogenicity for most plant pathogens is mostly dependent on the type-III secretion system, which introduces virulence type III effectors (T3Es) into eukaryotic host cells.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China. Electronic address:
Heat shock transcription factors (Hsfs) play important roles in plant developmental regulations and various abiotic stress responses. However, their evolutionary mechanism of freezing tolerance remains poorly understood. In our previous transcriptomics study based on DNA methylation sequencing, the BnaHsfA2 was found to be significantly accumulated in winter rapeseed (Brassica rapa L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!