AI Article Synopsis

  • The viral protein vMIA from human cytomegalovirus inhibits apoptosis by interacting with the pro-apoptotic protein Bax, a mechanism distinct from that of Bcl-2.* -
  • vMIA causes Bax to localize to the mitochondria and form large aggregates, preventing its typical pro-apoptotic function.* -
  • The findings suggest that vMIA effectively "freezes" Bax's activity, providing a new understanding of how viruses can manipulate apoptosis pathways to enhance their survival.*

Article Abstract

The viral mitochondria-localized inhibitor of apoptosis (vMIA), encoded by the UL37 gene of human cytomegalovirus, inhibits apoptosis-associated mitochondrial membrane permeabilization by a mechanism different from that of Bcl-2. Here we show that vMIA induces several changes in Bax that resemble those found in apoptotic cells yet take place in unstimulated, non-apoptotic vMIA-expressing cells. These changes include the constitutive localization of Bax at mitochondria, where it associates tightly with the mitochondrial membrane, forming high molecular weight aggregates that contain vMIA. vMIA recruits Bax to mitochondria but delays relocation of caspase-8-activated truncated Bid-green fluorescent protein (GFP) (t-Bid-GFP) to mitochondria. The ability of vMIA and its deletion mutants to associate with Bax and to induce relocation of Bax to mitochondria correlates with their anti-apoptotic activity and with their ability to suppress mitochondrial membrane permeabilization. Taken together, our data indicate that vMIA blocks apoptosis via its interaction with Bax. vMIA neutralizes Bax by recruiting it to mitochondria and "freezing" its pro-apoptotic activity. These data unravel a novel strategy of subverting an intrinsic pathway of apoptotic signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M308408200DOI Listing

Publication Analysis

Top Keywords

bax mitochondria
16
mitochondrial membrane
12
bax
8
recruits bax
8
membrane permeabilization
8
vmia
7
mitochondria
6
anti-apoptotic viral
4
viral protein
4
protein recruits
4

Similar Publications

Background: Findings have demonstrated that mitochondrial dysfunction is vital to Alzheimer's Disease (AD) pathogenesis and progression. This study explored an innovative treatment strategy involving transfer of polymer-functionalized, healthy mitochondria to AD neurons. We hypothesized that this organelle transplantation approach would restore mitochondrial function and bioenergetics, preventing aberrant neuronal dynamics associated with AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, College Station, Texas, USA., College Station, TX, USA.

Background: Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) in the extracellular space, which leads to various adverse effects such as oxidative stress, neuroinflammation, mitochondrial dysfunction, tau phosphorylation, synapse loss, and neurodegeneration. Therefore, therapeutic interventions that can reduce Aβ-toxicity and slow down the progression of cognitive dysfunction in AD have significance. One promising approach is to use extracellular vesicles (EVs) that are released by neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs).

View Article and Find Full Text PDF

Chronic kidney disease (CKD) stands as a formidable global health challenge, often advancing to end-stage renal disease (ESRD) with devastating morbidity and mortality. At the central of this progression lies podocyte injury, a critical determinant of glomerular dysfunction. Compound K (CK), a bioactive metabolite derived from ginsenoside, has emerged as a compelling candidate for nephroprotective therapy.

View Article and Find Full Text PDF

Peroxiredoxin 6 (PRDX6) is one of the Peroxiredoxin family members with only 1-Cys, using glutathione as the electron donor to reduce peroxides in cells. PRDX6 has been frequently studied and its expression was associated with poor prognosis in many tumors. However, the expression of PRDX6 in multiple myeloma (MM) and its relevance with MM remain unclear.

View Article and Find Full Text PDF

Myocardial ischemia/reperfusion injury (MIRI) is a serious clinical complication that is caused by reperfusion therapy following myocardial infarction (MI). Mitochondria-related genes (Mito-RGs) play important roles in multiple diseases. However, the role of mitochondria-related genes in MIRI remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!