We have studied the ubiquinone-reducing catalytic core of NADH:ubiquinone oxidoreductase (complex I) from Yarrowia lipolytica by a series of point mutations replacing conserved histidines and arginines in the 49-kDa subunit. Our results show that histidine 226 and arginine 141 probably do not ligate iron-sulfur cluster N2 but that exchanging these residues specifically influences the properties of this redox center. Histidines 91 and 95 were found to be essential for ubiquinone reductase activity of complex I. Mutations at the C-terminal arginine 466 affected ubiquinone affinity and inhibitor sensitivity but also destabilized complex I. These results provide further support for a high degree of structural conservation between the 49-kDa subunit of complex I and its ancestor, the large subunit of water-soluble [NiFe] hydrogenases. In several mutations of histidine 226, arginine 141, and arginine 466 the characteristic EPR signatures of iron-sulfur cluster N2 became undetectable, but specific, inhibitor-sensitive ubiquinone reductase activity was only moderately reduced. As we could not find spectroscopic indications for a modified cluster N2, we concluded that these complex I mutants were lacking most of this redox center but were still capable of catalyzing inhibitor-resistant ubiquinone reduction at near normal rates. We discuss that this at first surprising scenario may be explained by electron transfer theory; after removal of a single redox center in a chain, electron transfer rates are predicted to be still much faster than steady-state turnover of complex I. Our results question some of the central mechanistic functions that have been put forward for iron-sulfur cluster N2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M313180200 | DOI Listing |
Int J Mol Sci
February 2024
Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
Acquired Immunodeficiency Syndrome is caused by the Human Immunodeficiency Virus (HIV), and a significant number of fatalities occur annually. There is a dire need to develop an effective vaccine against HIV-1. Understanding the structural proteins of viruses helps in designing a vaccine based on immunogenic peptides.
View Article and Find Full Text PDFProtein Expr Purif
January 2024
Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal, 795003, India.
Lectins are proteins or glycoproteins that bind specifically and reversibly to the carbohydrate or glycoconjugates. A new lectin is purified from the rhizome of Xanthosoma violaceum Schott. by successive steps of ammonium sulfate fractionation and affinity chromatography with asialofetuin as ligand.
View Article and Find Full Text PDFACS Med Chem Lett
February 2023
Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
Mitochondrial oxidative phosphorylation (OXPHOS) is an essential cellular metabolic process that generates ATP. The enzymes involved in OXPHOS are considered to be promising druggable targets. Through screening of an in-house synthetic library with bovine heart submitochondrial particles, we identified a unique symmetric bis-sulfonamide, KPYC01112 () as an inhibitor targeting NADH-quinone oxidoreductase (complex I).
View Article and Find Full Text PDFBiochemistry
February 2023
W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Cellular plasminogen (Pg) receptors (PgRs) are utilized to recruit Pg; stimulate its activation to the serine protease, plasmin (Pm); and sterically protect the surface Pm from inactivation by host inhibitors. One such PgR is the moonlighting enzyme, enolase, some of which leaves the cytoplasm and resides at the cell surface to potentially function as a PgR. Since microbes employ conscription of host Pg by PgRs as one virulence mechanism, we explored the structural basis of the ability of enolase (Sen) to function in this manner.
View Article and Find Full Text PDFBiochemistry
March 2021
Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
The ubiquinone reduction step in NADH-ubiquinone oxidoreductase (complex I) is the key to triggering proton translocation in its membrane part. Although the existence of a long and narrow quinone-access channel has been identified, it remains debatable whether the channel model can account for binding of various ligands (ubiquinones and inhibitors) to the enzyme. We previously proposed that the matrix-side interfacial region of the 49 kDa, ND1, PSST, and 39 kDa subunits, which is covered by a loop connecting transmembrane helices (TMHs) 1 and 2 of ND3, may be the area for entry of some bulky ligands into the quinone reaction cavity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!