Extracorporeal shock waves (ESW) have recently been used in bone repair. Extracellular signal-regulated kinase (ERK) and p38 kinase are found to act as important mediators for osteogenic factor and mechanical-stimulated proliferation and differentiation of bone-forming cells. A previous study reported that ESW promoted healing of segmental defects in rats by inducing bone morphogenetic proteins (Bone 32 (2003) 387-396) and stimulating osteogenic differentiation of mesenchymal stem cells. In this study, we found that ERK and p38 activation was involved in ESW-augmented bone regeneration of segmental defects. ESW treatment (0.16 mJ/mm2, 1 Hz, 500 impulses) rapidly promoted [3H]-thymidine uptake in 1 day and progressively increased alkaline phosphatase activity, collagen I, II, and osteocalcin synthesis in callus organ culture within 14 days after treatment. Results of [gamma-32P]-phosphotransferase activity assay showed that ERK and p38 in calluses were rapidly activated 1 day and 7 days after ESW treatment, respectively. Histological observation showed that segmental defects subjected to ESW treatment underwent typical bone formation (mesenchymal cell aggregation, hypertrophic cartilage, and endochondral/intramembrane ossification). Intensive bone formation coincided with evident expression of phosphorylated ERK and p38. Moreover, expression of phosphorylated ERK persisted in mesenchymal, chondral, and osteoblastic cells at newly developed bone and cartilage, and the expression of activated p38 was evident on chondral cells located at hypertrophic cartilage. Our findings suggest that mitogen-activated protein kinases (MAPK) regulate the stimulation of biophysical ESW, triggering mitogenic and osteogenic responses in the defects. ERK phosphorylation is active throughout the period of ESW-induced bone regeneration. p38 activation most likely plays an important role in signaling cartilage formation in callus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2003.11.013 | DOI Listing |
J Microbiol Biotechnol
December 2024
Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.
Inflammatory is a crucial part of the immune system of body protect it from harmful invaders, such as bacteria, viruses, and other foreign substances. In this study, the effects of chloroform extract of fermented (CEFV) on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 macrophages were investigated.
View Article and Find Full Text PDFFood Res Int
February 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China. Electronic address:
The ethanol-induced BALB/c mice and human gastric epithelial cell (Ges-1 cell) models were used to investigate the Sargassum siliquastrum fucoidan (SFuc) gastroprotective capability. The injury score and histopathological sections of the stomach were used to evaluate the gastroprotective capability. The western blotting and RT-PCR methods determined the signaling mechanism of mice's gastric injury.
View Article and Find Full Text PDFActa Trop
January 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062, China. Electronic address:
Giardia duodenalis is a waterborne zoonotic protozoan that causes gastrointestinal inflammation. Giardiasis and metabolic illnesses share features such as chronic inflammation and intestinal symptoms. Receptor for advanced glycation end products (RAGE) signaling plays a role in metabolic illnesses and intestinal inflammatory responses.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Türkiye.
Objective: This study utilized three cell lines: normal prostate epithelial RWPE-1, androgen-dependent LNCaP, and androgen-independent PC3. We investigated the inhibitory effects of phenylboronic acid (PBA)'s inhibitory effect on cellular proliferation due to its ability to disrupt microtubule formation in prostate cancer cell lines. Additionally, this study aimed to assess the cytotoxic effects of PBA on prostate cancer cells using twodimensional (2D) and three-dimensional (3D) cell culture models.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America.
Aortic dissection or rupture is a major cause of mortality in vascular Ehlers-Danlos Syndrome (vEDS), a connective tissue disorder caused by heterozygous mutations in the COL3A1 gene. C57BL6/J (BL6) mice carrying the Col3a1 G938D/+ mutation recapitulate the vEDS vascular phenotype and die suddenly of aortic rupture/dissection. However, 129S6/SvEvTac (129) mice expressing the same Col3a1 G938D/+ mutation show near-complete life-long protection from vascular rupture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!