To identify potential new clinical uses and routes of administration for human interferon-beta-1a (IFN-beta-1a), we have developed an expression and purification procedure for the preparation of highly purified rat interferon-beta (IFN-beta) suitable for testing in rat models of human disease. An expression vector containing the rat IFN-beta signal sequence and structural gene was constructed and transfected into Chinese hamster ovary (CHO) cells. The protein was purified from CHO cell conditioned medium and purified to > 99.5% purity using standard chromatographic techniques. Analytical characterization indicated that the protein was a heavily glycosylated monomeric protein, with two of the four predicted N-glycosylation sites occupied. Analysis of the attached oligosaccharides showed them to be a complex mixture of bi-antennary, tri-antennary, and tetra-antennary structures with a predominance of sialylated tri-antennary and tetra-antennary structures. Peptide mapping, N-terminal sequencing, and mass spectrometry confirmed the identity and integrity of the purified protein. The purified protein had a specific activity of 2.1x10(8)U/mg when assayed on rat RATEC cells, which is similar in magnitude to the potencies observed for murine IFN-beta and human IFN-beta-1a assayed on murine and human cells, respectively. We also prepared an N-terminally PEGylated form of rat IFN-beta in which a 20 kDa methoxy polyethylene glycol (PEG)-propionaldehyde was attached to the N-terminal alpha-amino group of Ile-1. The PEGylated protein, which retained essentially full in vitro antiviral activity, had improved pharmacokinetic parameters in rats as compared to the unmodified protein. Both the unmodified and PEGylated forms of rat IFN-beta will be useful for testing in rat models of human disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2003.11.004DOI Listing

Publication Analysis

Top Keywords

rat ifn-beta
12
expression purification
8
rat
8
rat interferon-beta
8
n-terminally pegylated
8
pegylated form
8
improved pharmacokinetic
8
pharmacokinetic parameters
8
testing rat
8
rat models
8

Similar Publications

Characterization of neural infection by Oropouche orthobunyavirus.

bioRxiv

October 2024

Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.

Oropouche fever is a re-emerging global viral threat caused by infection with Oropouche orthobunyavirus (OROV). While disease is generally self-limiting, historical and recent reports of neurologic involvement highlight the importance of understanding the neuropathogenesis of OROV. In this study, we characterize viral replication kinetics in neurons and microglia derived from immortalized, primary, and induced pluripotent stem cell-derived cells, which are all permissive to infection.

View Article and Find Full Text PDF

The treatment of infected wounds relies on antibiotics; however, increasing drug resistance has made therapeutic processes more difficult. Activating self-innate immune abilities may provide a promising alternative to treat wounds with bacterial infections. In this work, we constructed an immunogenic injectable hydrogel crosslinked by the Schiff base reaction of carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA) and encapsulated with stimulator of interferon genes (STING) agonist c-di-GMP loaded ZIF-8 nanoparticles (c-di-GMP@ZIF-8).

View Article and Find Full Text PDF

Tilorone dihydrochloride (tilorone) is an orally active interferon inducer with anticancer effects. The present study aimed to evaluate the anticancer effects of tilorone in breast cancer. MTT assay was done to measure the proliferation of MCF-7 and MDA-MB-231 breast cancer cells after treatment with tilorone.

View Article and Find Full Text PDF

Microglia, resident immune cells in the central nervous system (CNS), play a critical role in maintaining CNS homeostasis. However, microglia activated in response to brain injury produce various inflammatory mediators, including nitric oxide (NO) and proinflammatory cytokines, leading to considerable neuronal damage. NO generated by inducible NO synthase (iNOS) rapidly reacts with superoxide to form a highly toxic product, peroxynitrite.

View Article and Find Full Text PDF

Inflammatory responses and oxidative stress contribute to the pathogenesis of brain ischemia/reperfusion (IR) injury. Naturally occurring bioflavonoids possess antioxidant and anti-inflammatory properties. The phytochemicals of , known as "Abhal" in Saudi Arabia, have been studied and cupressuflavone (CUP) has been isolated as the major bioflavonoid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!