Biosynthesis of natural-synthetic hybrid copolymers: polyhydroxyoctanoate-diethylene glycol.

Biomacromolecules

Biopolymer Research Group, CAMD, School of Biotechnology and Biomolecular Sciences and Nuclear Magnetic Resonance Facility, University of New South Wales, Sydney, NSW 2052 Australia.

Published: November 2004

A new natural-synthetic hybrid biomaterial has been isolated from the growth of Pseudomonas oleovorans in the presence of diethylene glycol (DEG). DEG was consumed by P. oleovorans with 20 mM sodium octanoate in modified E* medium, but its presence in the fermentation medium retarded cell growth and viability, influencing production and composition of polyhydroxyalkanoates with medium chain length substituents (mclPHAs) and consequently attenuating PHA yield. DEG affected the composition of the mclPHA with an increase in the C8 component: polyhydroxyoctanoate (PHO). Gas chromatography-mass spectrometry (GC-MS) was used to quantitatively monitor DEG in the system and reveal its cellular adsorption and penetration. Intracellularly, the DEG significantly reduced the molar mass of the mclPHA; PHO with a bimodal distribution of high and low molecular weight fractions was observed. 1H NMR, 2-D COSY, and heteronuclear single quantum coherence spectra confirmed that the high molecular weight fraction consisted of PHO chains terminated by DEG. Thus, the synthesis of this natural-synthetic hybrid copolymer, PHO-DEG, opens the way for microbial synthesis of a wide variety of PHA-DEG copolymers with a range of bioactive properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm0344708DOI Listing

Publication Analysis

Top Keywords

natural-synthetic hybrid
12
molecular weight
8
deg
6
biosynthesis natural-synthetic
4
hybrid copolymers
4
copolymers polyhydroxyoctanoate-diethylene
4
polyhydroxyoctanoate-diethylene glycol
4
glycol natural-synthetic
4
hybrid biomaterial
4
biomaterial isolated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!