Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking.

Biomacromolecules

Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France.

Published: November 2004

Poly(L-lysine)/hyaluronan (PLL/HA) films were chemically cross-linked with a water soluble carbodiimide (EDC) in combination with a N-hydroxysulfo-succinimide (NHS) to induce amide formation. Fourier transform infrared spectroscopy confirms the conversion of carboxylate and ammonium groups into amide bonds. Quartz crystal microbalance-dissipation reveals that the cross linking reaction is accompanied by a change in the viscoelastic properties of the films leading to more rigid films. After the cross-linking reaction, both positively and negatively ending films exhibit a negative zeta potential. It is shown by fluorescence recovery after photobleaching measured by confocal laser scanning microscopy that cross-linking dramatically reduces the diffusion of the PLL chains in the network. Cross linking also renders the films highly resistant to hyaluronidase, an enzyme that naturally degrades hyaluronan. Finally, the adhesion of chondrosarcoma cells on the films terminating either with PLL or HA is also investigated. Whereas the non cross-linked films are highly resistant to cell adhesion, the cells adhere and spread well on the cross-linked films.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm0342281DOI Listing

Publication Analysis

Top Keywords

films
9
cell adhesion
8
cross linking
8
films highly
8
highly resistant
8
cross-linked films
8
improvement stability
4
stability cell
4
adhesion properties
4
properties polyelectrolyte
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!