Tetrahydrofuran-based amino acids as library scaffolds.

J Comb Chem

Dyson Perrins Laboratory, Oxford Centre for Molecular Sciences, University of Oxford, South Parks Road, Oxford OX1 3QY, U.K.

Published: May 2004

A furanose sugar amino acid (SAA) has been utilized as a library scaffold for the first time. Two furanose SAA scaffolds were examined to illustrate their potential for derivatization. The resulting 99-member library contained three orthogonal points of diversification that allowed easy access to ethers and carbamates from a hydroxyl moiety, a range of ureas from an azide (via an amine), and a range of amides from a methyl ester. The novel amide formation (by displacement of the methoxide from the methyl ester moiety) was achieved in good yield and purity with high structural confidence. Full characterization of several library intermediates (including a crystal structure) was obtained. The library was submitted for antibacterial screening.

Download full-text PDF

Source
http://dx.doi.org/10.1021/cc034054rDOI Listing

Publication Analysis

Top Keywords

methyl ester
8
library
5
tetrahydrofuran-based amino
4
amino acids
4
acids library
4
library scaffolds
4
scaffolds furanose
4
furanose sugar
4
sugar amino
4
amino acid
4

Similar Publications

Ten new resin glycosides, ipoalbins I-X, from Ipomoea alba seeds.

J Nat Med

December 2024

School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, 861-2205, Japan.

Ipomoea alba L. (Convolvulaceae) is an annual vine native to tropical America that is cultivated primarily for ornamental purposes. Its seeds are used in traditional medicine as a laxative, and young shoots are consumed as food.

View Article and Find Full Text PDF

Antihypertensive Effect of Perla and Esmeralda Barley ( L.) Sprouts in an Induction Model with L-NAME In Vivo.

Metabolites

December 2024

Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Eliseo Ramírez Ulloa 400, Doctores Pachuca, Pachuca 42090, Hidalgo, Mexico.

Hypertension is one of the leading causes of premature death worldwide. Despite advances in conventional treatments, there remains a significant need for more effective and natural alternatives to control hypertension. In this context, sprouted barley extracts have emerged as a potential therapeutic option.

View Article and Find Full Text PDF

Harmful algal biotoxins in the marine environment are a threat to human food safety due to their bioaccumulation in bivalve shellfish. Whilst official control monitoring provides ongoing risk management for regulated toxins in live bivalve molluscs, no routine monitoring system is currently in operation in the UK for other non-regulated toxins. To assess the potential presence of such compounds, a systematic screen of bivalve shellfish was conducted throughout Great Britain.

View Article and Find Full Text PDF

Structural Elucidation and Antiviral Properties of Pannosides from the Halophyte L.

Mar Drugs

November 2024

College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea.

Four previously undescribed pentacyclic triterpenoid saponins, pannosides F-I (-), were isolated from the halophyte L. (), and their chemical structures were elucidated using 1D and 2D NMR spectroscopy and mass spectrometry. Comprehensive structural analysis revealed the presence of distinct aglycone and glycosidic moieties, along with complex acylation patterns.

View Article and Find Full Text PDF

Suitable structural modifications of the functional groups at N-substituent of (-)-cis-N-normetazocine nucleus modulate the affinity and activity profile of related ligands toward opioid receptors. Our research group has developed several compounds and the most interesting ligands, LP1 and LP2, exhibited a dual-target profile for mu-opioid receptor (MOR) and delta-opioid receptor (DOR). Recent structure-affinity relationship studies led to the discovery of novel LP2 analogs (compounds 1 and 2), which demonstrated high MOR affinity in the nanomolar range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!