Acid glycosaminoglycans (GAGs) antioxidant activity was assessed in a fibroblast culture system by evaluating reduction of oxidative system-induced damage. Three different methods to induce oxidative stress in human skin fibroblast cultures were used. In the first protocol cells were treated with CuSO4 plus ascorbate. In the second experiment fibroblasts were exposed to FeSO4 plus ascorbate. In the third system H2O2 was utilised. The exposition of fibroblasts to each one of the three oxidant systems caused inhibition of cell growth and cell death, increase of lipid peroxidation evaluated by the analysis of malondialdehyde (MDA), decrease of reduced glutathione (GSH) and superoxide dismutase (SOD) levels, and rise of lactate dehydrogenase activity (LDH). The treatment with commercial GAGs at different doses showed beneficial effects in all oxidative models. Hyaluronic acid (HA) and chondroitin-4-sulphate (C4S) exhibited the highest protection. However, the cells exposed to CuSO4 plus ascorbate and FeSO4 plus ascorbate were better protected by GAGs compared to those exposed to H2O2. These outcomes confirm the antioxidant properties of GAGs and further support the hypothesis that these molecules may function as metal chelators.

Download full-text PDF

Source
http://dx.doi.org/10.1023/B:GLYC.0000018587.67742.4bDOI Listing

Publication Analysis

Top Keywords

fibroblast cultures
8
cuso4 ascorbate
8
feso4 ascorbate
8
glycosaminoglycans reduce
4
oxidative
4
reduce oxidative
4
oxidative damage
4
damage induced
4
induced copper
4
copper cu+2
4

Similar Publications

Objective: We aimed to investigate the effects of Tongluo Zhitong formula on synovial fibroblast proliferation in human knee osteoarthritis (KOA).

Methods: Discarded synovial tissue collected from patients undergoing total knee arthroplasty at our hospital was digested with type I collagenase. Primary culture was performed on three to four generations of fibroblasts, which were treated with high, medium, and low concentrations of Tongluo Zhitong formula.

View Article and Find Full Text PDF

Objective: This in vitro study aimed to analyze the effects of ionizing radiation on immortalized human osteoblast-like cells (SaOS-2) and further assess their cellular response in co-culture with fibroblasts. These analyses, conducted in both monoculture and co-culture, are based on two theoretical models of osteoradionecrosis - the theory of hypoxia and cellular necrosis and the theory of the radiation-induced fibroatrophic process.

Design: SaOS-2 cells were exposed to ionizing radiation and evaluated for cell viability, nitric oxide (NO) production, cellular morphology, wound healing, and gene expression related to the PI3K-AKT-mTOR pathway.

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells.

View Article and Find Full Text PDF

We investigated the and uses of pamoic acid functionalized gold nanoparticles (PA@AuNPs), with a focus on determining their safety and potential toxicity in living beings. To test this theory, the bacterial interaction of PA@AuNPs was studied using , , and cultures, as well as the inhibition of the bovine serum albumin (BSA) protein. The real-time polymerase chain reaction (RT-PCR) is used to measure the expression of target genes.

View Article and Find Full Text PDF

Background: Surgical site infections (SSIs) have been shown to increase patient morbidity and mortality, impact on quality of life and place a significant economic burden on healthcare systems worldwide. Irrigation using wound cleansing and antiseptic effective solutions during surgical procedures is a key part of SSI prevention. The optimal solution would have minimal cytotoxicity to the patient while maintaining a minimum concentration required for antimicrobial activity necessary to prevent opportunistic pathogens and biofilm formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!