The first-trimester human placenta has limited antioxidant enzyme capacity. We investigated the distribution and transfer pathways of antioxidant molecules inside the first trimester gestational sac. The coelomic fluid of the exocoelomic cavity, which borders the inside of the first-trimester placenta, contained a very low level of reduced glutathione. Glutathione disulfide was undetectable in most coelomic samples, suggesting that the role of glutathione-related detoxification system is limited in fetal fluid compartments. The coelomic fluid contained similar concentrations of ascorbic and uric acid to maternal plasma. The levels of alpha- and gamma-tocopherol were lower in coelomic fluid, compared with maternal plasma. The presence of these molecules inside the early gestational sac suggests that they may play an essential role in the fetal tissues' antioxidant capacity at a time when the fetus is most vulnerable to oxidative stress. We also demonstrated by immunostaining the presence of alpha-tocopherol transfer protein in the cytoplasm of trophoblastic cells, glandular epithelium of the decidua, and mesothelial layer of the secondary yolk sac. This finding indicates that the uterine glands and the secondary yolk sac play key roles in supplying this essential vitamin to the developing fetus before the placental circulations are established.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2003-031332DOI Listing

Publication Analysis

Top Keywords

molecules inside
12
gestational sac
12
coelomic fluid
12
distribution transfer
8
transfer pathways
8
pathways antioxidant
8
antioxidant molecules
8
inside trimester
8
maternal plasma
8
secondary yolk
8

Similar Publications

Insight into the Mechanism of d-Glucose Accelerated Exchange in GLUT1 from Molecular Dynamics Simulations.

Biochemistry

January 2025

BHF Centre of Research Excellence, School of Medicine and Life Sciences, King's College London, London SE1 9NH, United Kingdom.

Transmembrane glucose transport, facilitated by glucose transporters (GLUTs), is commonly understood through the simple mobile carrier model (SMCM), which suggests that the central binding site alternates exposure between the inside and outside of the cell, facilitating glucose exchange. An alternative "multisite model" posits that glucose transport is a stochastic diffusion process between ligand-operated gates within the transporter's central channel. This study aims to test these models by conducting atomistic molecular dynamics simulations of multiple glucose molecules docked along the central cleft of GLUT1 at temperatures both above and below the lipid bilayer melting point.

View Article and Find Full Text PDF

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

Generating Beta Zeolite Nanosheets of Intergrown Polymorph B and C Using Polycationic Structure-Directing Agent.

Small

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.

Zeolitic nanosheets possess great potential in catalysis due to their enhanced transport property and accessibility toward bulky molecules compared to conventional micron- meter scale crystals. However, the generation of Beta zeolite nanosheets, which are crucial for industrial catalysis, is still challenging for its intergrowth nature. In this work, aluminosilicate Beta nanosheets of ca.

View Article and Find Full Text PDF

Drug-assisted White Light Generation via Self-assembly.

Chem Asian J

January 2025

IISER Bhopal Department of Chemistry, Chemistry, Indore By-pass Road, Bhauri, 462066, Bhopal, INDIA.

White-light generation using small organic molecules has gained significant attention from researchers working on the interface of supramolecular chemistry and organic materials. Self-assembled multi-chromophoric materials utilizing a drug molecule and microenvironment-sensitive intramolecular charge transfer dye as an emitter offer the possibility of tunable emission. In this investigation, we focused on white light generation via the combination of a polarity-sensitive red-emitting styryl chromone (SC) and a blue-emitting anticancer and psychotherapeutic drug Norharmane (NHM) in a self-assembled micellar system.

View Article and Find Full Text PDF

Super-resolution microscopy has revolutionized biological imaging, enabling the visualization of structures at the nanometer length scale. Its application in live cells, however, has remained challenging. To address this, we adapted LIVE-PAINT, an approach we established in yeast, for application in live mammalian cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!