Polycystin-2 (PC2), encoded by the PKD2 gene, mutated in 10-15% of autosomal-dominant polycystic kidney disease (ADPKD) patients, is a Ca2+-permeable cation channel present in kidney epithelia and other tissues. As PC2 was found expressed in B-lymphoblastoid cells (LCLs) and Ca2+ signaling pathways are important regulators of B cell function activities, we investigated whether PC2 plays some role in B-LCLs. In LCLs, PC2 was found mainly in ER membranes but ~8 times less than in kidney HEK293 cells. The same reductions were found in PKD2 and PKD1 RNA; thus, PKD genes maintained, in LCLs, the same reciprocal proportion as they do in kidney cells. In LCLs obtained from subjects carrying PKD2 mutations (PKD2-LCLs) and showing reduced PC2 levels, intracellular Ca2+ concentrations evoked by platelet-activating factor (PAF), were significantly lower than in non-PKD-LCLs. This reduction was also found in PKD1-LCLs but without PC2 reductions. Likewise, cell proliferation, which is controlled by Ca2+, was reduced in PKD2- and PKD1-LCLs. Moreover, in LCLs with PKD2 nonsense mutations, aminoglycoside antibiotics reduced the PC2 defect by promoting readthrough of stop codons. Therefore, PC2 and PC1 are functionally expressed in LCLs, which provide a model, easily obtainable from ADPKD patients, to study PKD gene expression and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.03-0687fje | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!