The kinetic effects of the cardiac myosin point mutations R403Q and R453C, which underlie lethal forms of familial hypertrophic cardiomyopathy (FHC), were assessed using isolated myosin and skinned strips taken from heterozygous (R403Q/+ and R453C/+) male mouse hearts. Compared with wild-type (WT) mice, actin-activated ATPase was increased by 38% in R403Q/+ and reduced by 45% in R453C/+, maximal velocity of regulated thin filament (V(RTF)) in the in vitro motility assay was increased by 8% in R403Q/+ and was not different in R453C/+, myosin concentration at half-maximal V(RTF) was reduced by 30% in R403Q/+ and not different in R453C/+, and the characteristic frequency for oscillatory work production (b frequency), determined by sinusoidal analysis in the skinned strip at maximal calcium activation, was 27% lower in R403Q/+ and 18% higher in R453C/+. The calcium sensitivity for isometric tension in the skinned strip was not different in R403Q/+ (pCa(50) 5.64 +/- 0.02) and significantly enhanced in R453C/+ (5.82 +/- 0.03) compared with WT (5.58 +/- 0.02). We conclude that isolated myosin and skinned strips of R403Q/+ and R453C/+ myocardium show marked differences in cross-bridge kinetic parameters and in calcium sensitivity of force production that indicate different functional roles associated with the location of each point mutation at the molecular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.01015.2003 | DOI Listing |
J Biol Chem
June 2018
the BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309,
Am J Physiol Heart Circ Physiol
July 2007
Deptartment of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA.
Point mutations in cardiac myosin, the heart's molecular motor, produce distinct clinical phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathy. Do mutations alter myosin's molecular mechanics in a manner that is predictive of the clinical outcome? We have directly characterized the maximal force-generating capacity (F(max)) of two HCM (R403Q, R453C) and two DCM (S532P, F764L) mutant myosins isolated from homozygous mouse models using a novel load-clamped laser trap assay. F(max) was 50% (R403Q) and 80% (R453C) greater for the HCM mutants compared with the wild type, whereas F(max) was severely depressed for one of the DCM mutants (65% S532P).
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2004
Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
The kinetic effects of the cardiac myosin point mutations R403Q and R453C, which underlie lethal forms of familial hypertrophic cardiomyopathy (FHC), were assessed using isolated myosin and skinned strips taken from heterozygous (R403Q/+ and R453C/+) male mouse hearts. Compared with wild-type (WT) mice, actin-activated ATPase was increased by 38% in R403Q/+ and reduced by 45% in R453C/+, maximal velocity of regulated thin filament (V(RTF)) in the in vitro motility assay was increased by 8% in R403Q/+ and was not different in R453C/+, myosin concentration at half-maximal V(RTF) was reduced by 30% in R403Q/+ and not different in R453C/+, and the characteristic frequency for oscillatory work production (b frequency), determined by sinusoidal analysis in the skinned strip at maximal calcium activation, was 27% lower in R403Q/+ and 18% higher in R453C/+. The calcium sensitivity for isometric tension in the skinned strip was not different in R403Q/+ (pCa(50) 5.
View Article and Find Full Text PDFJ Cell Sci
October 2003
Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
We have investigated the functional impact on cardiac myofibril organization and myosin motor activity of point mutations associated with familial hypertrophic cardiomyopathies (FHC). Embryonic chicken cardiomyocytes were transfected with vectors encoding green fluorescent protein (GFP) fused to a striated muscle myosin heavy chain (GFP-myosin). Within 24 hours of transfection, the GFP-myosin is found co-assembled with the endogenous myosin in striated myofibrils.
View Article and Find Full Text PDFJ Am Coll Cardiol
June 2002
Department of Internal Medicine/Division of Cardiovascular Diseases, Rochester, Minnesota 55905, USA.
Objectives: The goal of this study was to determine the prevalence of "malignant" mutations in hypertrophic cardiomyopathy (HCM).
Background: Previous genotype-phenotype studies have implicated four mutations (R403Q, R453C, G716R and R719W) as highly malignant defects in the beta-myosin heavy chain (MYH7). In the cardiac troponin T gene (TNNT2), a specific mutation (R92W) has been associated with high risk of sudden death.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!