Aim: To clone the cDNA of a new member of snake venom C-type lectin-like proteins, to study its structure-function relationships and to achieve its recombinant production.

Methods: PCR primers were designed based on the homology and cDNA was amplified by RT-PCR using total RNA from snake venom gland as the template. The PCR products were cloned into the plasmid pGEM-T and sequenced. The deduced protein sequence was analyzed with some bioinformatic programs. A recombinant expression plasmid was constructed using pBAD-TOPO as vector and transformed into E.coli TOP10 competent cells.

Results: A novel cDNA sequence encoding akitonin beta was found and accepted by GenBank (accession number AF387100). Akitonin beta consists of a typical carbohydrate recognition domain (CRD) of C-type lectins, and it is homologous with other snake venom C-type lectin-like proteins. It was predicted to be a platelet antagonist. Upon induction with arabinose rAkitonin beta expressing in E coli was achieved at a high level (superior to 150 mg/L). The recombinant fusion protein exhibited inhibitory activities on rat platelet aggregation in vitro.

Conclusion: A new member of snake venom C-type lectin-like proteins was discovered and characterized, and an efficient recombinant expression system was established for its production.

Download full-text PDF

Source

Publication Analysis

Top Keywords

c-type lectin-like
16
snake venom
16
recombinant expression
12
akitonin beta
12
venom c-type
12
lectin-like proteins
12
member snake
8
recombinant
5
c-type
5
cdna
4

Similar Publications

Dectin-1 (CLEC7A), a C-type lectin-like receptor that recognizes β-1,3 glucans, has a key role in the innate immune system. While the lectin domain of mouse Dectin-1 has been solubilized and refolded from inclusion bodies in Escherichia coli, similar refolding of the human Dectin-1 lectin domain is hindered by the formation of misfolded multimers with aberrant intermolecular disulfide bonds. The aim of this study was to develop a method for the large-scale production of the human Dectin-1 lectin domain.

View Article and Find Full Text PDF

LLT1 overexpression renders allogeneic-NK resistance and facilitates the generation of enhanced universal CAR-T cells.

J Exp Clin Cancer Res

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.

Background: The benefit of universal CAR-T cells over autologous CAR-T cell therapy is that they are a treatment that is ready to use. However, the prevention of graft-versus-host disease (GVHD) and host-versus-graft reaction (HVGR) remains challenging. Deleting class I of human leukocyte antigen (HLA-I) and class II of human leukocyte antigen (HLA-II) can prevent rejection by allogeneic T cells; however, natural killer (NK) cell rejection due to the loss of self-recognition remains unresolved.

View Article and Find Full Text PDF

The resurgence of COVID-19 and the rise in severe outcomes emphasize the need for reliable prognostic markers to guide patient care and optimize ICU and hospital resources. This study investigates the potential of nasopharyngeal swabs to identify biomarkers that predict ICU admission or death in hospitalized COVID-19 patients. We analyzed nasopharyngeal exudates from 95 hospitalized patients in 2020 using high-plex RNA quantification on the NanoString nCounter platform.

View Article and Find Full Text PDF

Corrigendum to "A C-type lectin-like receptor CD302 in yellow drum (Nibea albiflora) functioning in antibacterial activity and innate immune signaling" [Int. J. Biol. Macromol. 247 (2023) 125734].

Int J Biol Macromol

January 2025

Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China; Shenzhen Base of South China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.. Electronic address:

View Article and Find Full Text PDF

Genetically reprogrammed exosomes for immunotherapy of acute myeloid leukemia.

Mol Ther

January 2025

Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA. Electronic address:

Current treatments for acute myeloid leukemia (AML) remain challenging and are characterized by poor clinical outcomes. Exosomes, cell-derived membranous vesicles, have been emerging as a new modality of therapy. Here, we designed and generated genetically reprogrammed exosomes with surface-displayed antibodies and immunoregulatory proteins, namely programmed immune-engaging exosomes (PRIME Exos).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!