Aim: To observe the neuroprotective mechanism of modafinil on Parkinson disease (PD) models induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP).

Methods: The model of PD was induced by intraperitoneally injecting MPTP into C57BL/6J mice for 4 d. Modafinil (i.p., 50 or 100 mg/kg(-1)/d(-1)) was administered at 30 min following MPTP for 4 d and for another 10 d continuously. The contents of dopamine (DA), noradrenaline (NA), 5-hydroxytryptamine (5-HT), gamma-aminobutyric acid (GABA), glutamine (Glu) in the striatum, and the contents of GABA, Glu, malondialdehyde (MDA), and glutathione (GSH) in the substantia nigra (SN) of model mice were determined.

Results: Modafinil (50 and 100 mg/kg) prevented against the decrease of the contents of DA, 5-HT, and NA in the striatum and GSH, GABA in the SN induced by MPTP, but reduced the increase of MDA in the SN and GABA in the striatum induced by MPTP. Modafinil preferentially inhibited striatal GABA release, but it did not change the increase of nigrostriatal Glu release induced by MPTP.

Conclusion: The anti-oxidation and the modulation of nigrostriatal GABA and striatal NA and 5-HT release contributed to the neuroprotective effects of modafinil on PD induced by MPTP.

Download full-text PDF

Source

Publication Analysis

Top Keywords

induced mptp
12
neuroprotective mechanism
8
mechanism modafinil
8
modafinil parkinson
8
parkinson disease
8
modafinil 100
8
induced
7
modafinil
6
gaba
6
mptp
5

Similar Publications

Programmed cell death (apoptosis) is essential part of the process of tissue regeneration that also plays role in the mechanism of pathology. The phenomenon of fast and transient permeability of mitochondrial membranes by various triggers, known as permeability transition pore (mPTP) leads to the release of proapoptotic proteins and acts as an initial step in initiation of apoptosis. However, a role for mPTP was also suggested for physiology and it is unclear if there is a threshold in number of mitochondria with mPTP which induces cell death and how this mechanism is regulated in different tissues.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent and challenging neurodegenerative disorder, and may involve impaired autophagy. Nuclear factor erythroid-2-related factor 2 (Nrf2) is crucial for regulating autophagy-related genes, maintaining cellular homeostasis. Electroacupuncture (EA), a complementary and alternative therapy for PD, has gained widespread clinical application.

View Article and Find Full Text PDF
Article Synopsis
  • Ripk3 is key in acute lung injury (ALI) by driving endothelial cell damage and inflammation, although the exact mechanisms are not fully understood.
  • Studies using Ripk3-deficient mice revealed that removing Ripk3 improved lung tissue health, decreased inflammation, oxidative stress, and endothelial dysfunction after exposure to lipopolysaccharide (LPS).
  • Ripk3 was found to inhibit the AMPK pathway and promote necroptosis in endothelial cells by affecting mitochondrial function, suggesting it could be a target for new treatments for ALI.
View Article and Find Full Text PDF

Cinnamaldehyde (CA), the primary bioactive compound in cinnamon ( Presl, Lauraceae, ), holds potential therapeutic benefits for Parkinson's disease (PD). To scrutinize the impact and mechanisms of CA on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, male C57BL/6 mice were randomly allocated to CA (150, 300, and 600 mg/kg), model, Madopar, and control group ( = 12). The Open Field, Pole-jump, and Rotarod experiments assessed exercise capacity and anxiety levels.

View Article and Find Full Text PDF

Parkinson's disease (PD), characterized by progressive degeneration of dopaminergic neurons in substantia nigra, has no disease-modifying therapy. Mesenchymal stem cell (MSC) therapy has shown great promise as a disease-modifying solution for PD. Induced pluripotent stem cell-derived MSC (iMSC) not only has stronger neural repair function, but also helps solve the problem of MSC heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!