Bioconversion of penicillin G in PEG 20000/dextran T 70 aqueous two-phase systems was achieved using the recombinant Escherichia coli A56 (ppA22) with an intracellular penicillin acylase as catalyst. The best conversion conditions were attained for: 7% (w/v) substrate (penicillin G), enzyme activity in bottom phase 52 U ml(-1), pH 7.8, temperature 37 degrees C, reaction time 40 min. Five repeated batches could be performed in these conditions. Conversions ratios between 0.9-0.99 mol of 6-aminopenicillanic acid (6-APA) per mol of penicillin G, were obtained and volumetric productivity was 3.6-4.6 micromol min(-1) ml(-1). In addition the product 6-APA could be directly crystallized from the top phase with a purity of 96%.

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:bile.0000012885.62462.f3DOI Listing

Publication Analysis

Top Keywords

6-aminopenicillanic acid
8
aqueous two-phase
8
two-phase systems
8
recombinant escherichia
8
escherichia coli
8
intracellular penicillin
8
penicillin acylase
8
penicillin
5
production 6-aminopenicillanic
4
acid aqueous
4

Similar Publications

Strategies to enhance the hydrolytic activity of Escherichia coli BL21 penicillin G acylase based on heterologous expression and targeted mutagenesis.

Colloids Surf B Biointerfaces

February 2025

School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China. Electronic address:

Penicillin G acylase (PGA) serves as a critical biocatalyst for the hydrolysis of penicillin G, yielding 6-aminopenicillanic acid, a vital precursor for β-lactam semi-synthetic antibiotics. The catalytic efficiency of PGA, however, remains suboptimal in native Escherichia coli strains. To improve this, E.

View Article and Find Full Text PDF
Article Synopsis
  • This study explored how gut microbiota (GM) affects the development of gout and hyperuricemia using genetic data and experiments on mice.
  • Researchers used advanced statistical methods to predict the impact of GM on gout and identified specific GM taxa linked to the disease, as well as 38 immune cell traits associated with gout.
  • The findings revealed that changes in gut microbiome due to dysbiosis were related to alterations in serum metabolites and kidney gene expression, affecting vitamin B6 metabolism and leading to inflammation.
View Article and Find Full Text PDF

Analysis of dissolved organic matter characteristics in pharmaceutical wastewater via spectroscopy combined with Fourier-transform ion cyclotron resonance mass spectrometry.

J Hazard Mater

November 2024

College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, Hebei, China. Electronic address:

Studying the changes in organic matter and characteristic pollutants during the treatment of penicillin-containing pharmaceutical wastewater, which can be reflected by changes in dissolved organic matter (DOM), is crucial for improving the effectiveness of wastewater treatment units and systems. Herein, water quality indicators, spectroscopic methods, and Fourier-transform ion cyclotron resonance mass spectrometry were utilized to characterize the general molecular compositions and specific molecular changes in DOM during the treatment of typical penicillin-containing pharmaceutical wastewater, including in each of the influent, physicochemical treatment, biological treatment, oxidation treatment, and effluent stages. The influent exhibited a high organic matter content (concentration of dissolved organic carbon >10,000 mg·L), its DOM mainly contained protein- and lignin-like substances composed of CHON and CHONS molecules, and the relative intensity (RI) of penicillin was extremely high (RI = 0.

View Article and Find Full Text PDF

In this study, alginate/vermiculite (Alg/VMT) hydrogel with 3-aminopropyl triethoxysilane (Alg/VSN) and tetraethoxysilane (Alg/VS) synthesized with various concentrations of CaCl (10 %-15 %-20 % M) to extend the release of 6-Aminopenicillanic acid (AP). Composites characterized by XRD, FTIR and BET. The result of Alg/VS composite shows an excellent loading of 243.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!