The relationship of the platelet-mediated autoagglutination of Plasmodium falciparum-infected red blood cells (IRBCs) to disease severity was investigated in 182 Thai patients with falciparum malaria; it was evident in 43% of uncomplicated malaria (n=63), 41% of severe malaria (n=104), and 100% of cerebral malaria (n=15; P=.001) isolates. The median (range) number of IRBCs in agglutinates per 1000 IRBCs was significantly higher in cerebral malaria (6 [3-42]) than in severe (0 [0-52]) and uncomplicated (0 [0-24]) malaria (P=.01). In multivariate analyses, high parasitemia and cerebral malaria were associated independently with parasite agglutination.

Download full-text PDF

Source
http://dx.doi.org/10.1086/381900DOI Listing

Publication Analysis

Top Keywords

cerebral malaria
12
autoagglutination plasmodium
8
plasmodium falciparum-infected
8
falciparum-infected red
8
red blood
8
blood cells
8
disease severity
8
malaria
7
platelet-induced autoagglutination
4
cells disease
4

Similar Publications

[Investigation of Molecular Differences in Plasmodium spp. Isolates Obtained from Malaria Patients].

Mikrobiyol Bul

January 2025

Sağlık Bilimleri Üniversitesi, Kayseri Şehir Eğitim ve Araştırma Hastanesi, Parazitoloji Laboratuvarı, Kayseri.

Sıtma, her yıl dünya nüfusunun yarısından fazlası için ciddi bir tehdit oluşturmaya devam etmektedir. Hastalığa neden olan Plasmodium parazitleri, yalnızca insanlarla sınırlı kalmayıp sürüngenlerden kuşlara, memelilerden diğer omurgalılara dek geniş enfeksiyon yelpazesine sahiptir. Plasmodium türleri, çevredeki değişikliklere uyum sağlamalarını sağlayan olağanüstü genetik esnekliğe sahiptir ve bu da onlara sıtma ilaçları gibi tedavi edici maddelere karşı hızla direnç geliştirme ve konakçı özgüllüğünü değiştirme potansiyeli verir.

View Article and Find Full Text PDF

Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection, with resistance to antimalarial drugs, including artemisinin-based combination therapies(ACTs), posing a significant threat. CD4+ naive cells expressing CCR7 are known to play a protective role, as they readily migrate to secondary lymphoid tissues activated by CCL19 chemokines. In an effort to address this challenge, we investigated the impact of Annona muricata, an herbaceous and immunomodulatory plant, on CCL19 concentration.

View Article and Find Full Text PDF

Background And Aim: Cerebral malaria in Gambian children has been studied but there is limited information on CM in adults. The study assesses the clinical features and outcome of CM in adult patients admitted at the Edward Francis Small Teaching Hospital.

Method: This was a retrospective review of all adult patients with malaria admitted to the internal medicine department from October 18, 2020 to February 2, 2022.

View Article and Find Full Text PDF

Contribution of Magnetic Resonance Imaging Studies to the Understanding of Cerebral Malaria Pathogenesis.

Pathogens

November 2024

Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France.

Cerebral malaria (CM), the most lethal clinical syndrome of infection, mostly affects children under 5 in sub-Saharan Africa. CM is characterized by seizures and impaired consciousness that lead to death in 15-20% of cases if treated quickly, but it is completely fatal when untreated. Brain magnetic resonance imaging (MRI) is an invaluable source of information on the pathophysiology of brain damage, but, due to limited access to scanners in endemic regions, only until very recently have case reports of CM patients studied with advanced MRI methods been published.

View Article and Find Full Text PDF

Malaria monoclonals block brain binding.

Trends Parasitol

January 2025

Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.

In Plasmodium falciparum malaria, infected cells accumulate in blood vessels of organs, including the brain. Recently, Reyes et al. identified monoclonal antibodies that stop infected cells from binding to the endothelial protein C receptor (EPCR) in a model of brain blood vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!